Skip to main content

Advertisement

Log in

All-solid-state asymmetric supercapacitors based on VS4 nano-bundles and MXene nanosheets

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transition metal sulfides such as MoS2 and VS2 have emerged as promising candidates for energy storage applications in recent years. Among the reported transition metal sulfides, the patronite (VS4) form of vanadium sulfide is less explored and understanding its charge storage mechanisms is unusual in the literature. Here, we report the pseudocapacitive energy storage performance of patronite (VS4) nano-bundles synthesized via template-free hydrothermal approach by fabricating a solid-state asymmetric supercapacitor device (SSAD) with MXene (Ti3C2Tx) as the negative electrode. The fabricated VS4//MXene SSAD displayed a remarkable supercapacitive behavior in an expanded working potential window of 1.3 V. The device demonstrated a record high performance with the areal capacitance of 70.9 mF/cm2 at the scan rate of 5 mV/s and demonstrated ~ 4.5 and ~ 6 times superior areal capacitance as compared to the bare VS4 nano-bundles and MXene-based symmetric devices. Further, the device displayed an excellent energy density of 5.65 mW h/cm2 with a remarkable power density of 290.9 mW/cm2 and good cyclic stability ~ 75% after 3000 cycles in neutral electrolyte. Moreover, we have performed extensive density functional theory simulations to present electronic properties of VS4 and MXene supporting pseudocapacitive behavior for VS4 through reversible Faradic redox reactions and pre-dominant electrical double-layer capacitive behavior for MXene due to intercalation/de-intercalation of ions. The diffusion energy barrier for electrolytic ions is lower in VS4 (only 0.17 eV) satisfying better and rapid transport of charge carriers generated in VS4 justifying high charge storage performance. Populated electronic states for V 3d orbital in both the valence band and conduction band justify superior redox-type behavior for VS4 supporting experimental observations.

Graphical abstract

Enhanced energy storage performance of asymmetric supercapacitors based on VS4 and MXene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bauer S, Bauer-Gogonea S, Graz I et al (2014) 25th anniversary article: a soft future: from robots and sensor skin to energy harvesters. Adv Mater 26:149–162. https://doi.org/10.1002/adma.201303349

    Article  CAS  Google Scholar 

  2. Son D, Lee J, Qiao S et al (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol 9:397–404. https://doi.org/10.1038/nnano.2014.38

    Article  CAS  Google Scholar 

  3. Huang Y, Zhu M, Pei Z et al (2016) A shape memory supercapacitor and its application in smart energy storage textiles. J Mater Chem A 4:1290–1297. https://doi.org/10.1039/C5TA09473A

    Article  CAS  Google Scholar 

  4. Dubal DP, Chodankar NR, Kim D-H, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47:2065–2129. https://doi.org/10.1039/C7CS00505A

    Article  CAS  Google Scholar 

  5. Lu Y, Jiang K, Chen D, Shen G (2019) Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 58:624–632. https://doi.org/10.1016/j.nanoen.2019.01.084

    Article  CAS  Google Scholar 

  6. Ning F, He X, Shen Y et al (2017) Flexible and lightweight fuel cell with high specific power density. ACS Nano 11:5982–5991. https://doi.org/10.1021/acsnano.7b01880

    Article  CAS  Google Scholar 

  7. Hu Y, Sun X (2014) Flexible rechargeable lithium ion batteries: advances and challenges in materials and process technologies. J Mater Chem A 2:10712–10738. https://doi.org/10.1039/C4TA00716F

    Article  CAS  Google Scholar 

  8. Palchoudhury S, Ramasamy K, Gupta RK, Gupta A (2019) Flexible supercapacitors: a materials perspective. Front Mater. https://doi.org/10.3389/fmats.2018.00083

    Article  Google Scholar 

  9. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828. https://doi.org/10.1039/C1CS15060J

    Article  CAS  Google Scholar 

  10. Peng X, Peng L, Wu C, Xie Y (2014) Two dimensional nanomaterials for flexible supercapacitors. Chem Soc Rev 43:3303–3323. https://doi.org/10.1039/C3CS60407A

    Article  CAS  Google Scholar 

  11. Samal R, Chakraborty B, Saxena M et al (2019) Facile production of mesoporous WO3-rGO hybrids for high-performance supercapacitor electrodes: an experimental and computational study. ACS Sustain Chem Eng 7:2350–2359. https://doi.org/10.1021/acssuschemeng.8b05132

    Article  CAS  Google Scholar 

  12. Ratha S, Rout CS (2013) Supercapacitor electrodes based on layered tungsten disulfide-reduced graphene oxide hybrids synthesized by a facile hydrothermal method. ACS Appl Mater Interfaces 5:11427–11433. https://doi.org/10.1021/am403663f

    Article  CAS  Google Scholar 

  13. Kurra N, Xia C, Hedhili NM, Alshareef NH (2015) Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage. Chem Commun 51:10494–10497. https://doi.org/10.1039/C5CC03220B

    Article  CAS  Google Scholar 

  14. Cao L, Yang S, Gao W et al (2013) Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small 9:2905–2910. https://doi.org/10.1002/smll.201203164

    Article  CAS  Google Scholar 

  15. Feng J, Sun X, Wu C et al (2011) Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 133:17832–17838. https://doi.org/10.1021/ja207176c

    Article  CAS  Google Scholar 

  16. Liu B-T, Shi X-M, Lang X-Y et al (2018) Extraordinary pseudocapacitive energy storage triggered by phase transformation in hierarchical vanadium oxides. Nat Commun 9:1375. https://doi.org/10.1038/s41467-018-03700-3

    Article  CAS  Google Scholar 

  17. Liu L, Zhao H, Lei Y (2019) Review on nanoarchitectured current collectors for pseudocapacitors. Small Methods 3:1800341. https://doi.org/10.1002/smtd.201800341

    Article  CAS  Google Scholar 

  18. Choi C, Ashby DS, Butts DM et al (2020) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5:5–19. https://doi.org/10.1038/s41578-019-0142-z

    Article  Google Scholar 

  19. An C, Zhang Y, Guo H, Wang Y (2019) Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Adv 1:4644–4658. https://doi.org/10.1039/C9NA00543A

    Article  CAS  Google Scholar 

  20. Li X, Du D, Zhang Y et al (2017) Layered double hydroxides toward high-performance supercapacitors. J Mater Chem A 5:15460–15485. https://doi.org/10.1039/C7TA04001F

    Article  CAS  Google Scholar 

  21. Yuan S, Pang S-Y, Hao J (2020) 2D transition metal dichalcogenides, carbides, nitrides, and their applications in supercapacitors and electrocatalytic hydrogen evolution reaction. Appl Phys Rev 7:021304. https://doi.org/10.1063/5.0005141

    Article  CAS  Google Scholar 

  22. Pandit B, Bommineedi LK, Sankapal BR (2019) Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure. J Energy Chem 31:79–88. https://doi.org/10.1016/j.jechem.2018.05.011

    Article  Google Scholar 

  23. Wang X, Zhang Y, Zheng J et al (2020) Fabrication of vanadium sulfide (VS4) wrapped with carbonaceous materials as an enhanced electrode for symmetric supercapacitors. J Colloid Interface Sci 574:312–323. https://doi.org/10.1016/j.jcis.2020.04.072

    Article  CAS  Google Scholar 

  24. Naguib M, Kurtoglu M, Presser V et al (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253. https://doi.org/10.1002/adma.201102306

    Article  CAS  Google Scholar 

  25. Zhang C, Anasori B, Seral-Ascaso A et al (2017) Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv Mater 29:1702678. https://doi.org/10.1002/adma.201702678

    Article  CAS  Google Scholar 

  26. Qian A, Pang Y, Wang G et al (2020) Pseudocapacitive charge storage in MXene–V2O5 for asymmetric flexible energy storage devices. ACS Appl Mater Interfaces 12:54791–54797. https://doi.org/10.1021/acsami.0c16959

    Article  CAS  Google Scholar 

  27. Couly C, Alhabeb M, Aken KLV et al (2018) Asymmetric flexible mxene-reduced graphene oxide micro-supercapacitor. Adv Electron Mater 4:1700339. https://doi.org/10.1002/aelm.201700339

    Article  CAS  Google Scholar 

  28. Li K, Wang X, Wang X et al (2020) All-pseudocapacitive asymmetric MXene-carbon-conducting polymer supercapacitors. Nano Energy 75:104971. https://doi.org/10.1016/j.nanoen.2020.104971

    Article  CAS  Google Scholar 

  29. Jiang Q, Kurra N, Alhabeb M et al (2018) All pseudocapacitive MXene-RuO2 asymmetric supercapacitors. Adv Energy Mater 8:1703043. https://doi.org/10.1002/aenm.201703043

    Article  CAS  Google Scholar 

  30. Jing Y, Zhou Z, Cabrera CR, Chen Z (2013) Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. J Phys Chem C 117:25409–25413. https://doi.org/10.1021/jp410969u

    Article  CAS  Google Scholar 

  31. Lui G, Jiang G, Duan A et al (2015) Synthesis and characterization of template-free VS4 nanostructured materials with potential application in photocatalysis. Ind Eng Chem Res 54:2682–2689. https://doi.org/10.1021/ie5042287

    Article  CAS  Google Scholar 

  32. Rout CS, Kim B-H, Xu X et al (2013) Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J Am Chem Soc 135:8720–8725. https://doi.org/10.1021/ja403232d

    Article  CAS  Google Scholar 

  33. Sun R, Wei Q, Sheng J et al (2017) Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. Nano Energy 35:396–404. https://doi.org/10.1016/j.nanoen.2017.03.036

    Article  CAS  Google Scholar 

  34. Xu X, Jeong S, Rout CS et al (2014) Lithium reaction mechanism and high rate capability of VS4–graphene nanocomposite as an anode material for lithium batteries. J Mater Chem A 2:10847–10853. https://doi.org/10.1039/C4TA00371C

    Article  CAS  Google Scholar 

  35. Kozlova MN, Mironov YV, Grayfer ED et al (2015) Synthesis, crystal structure, and colloidal dispersions of vanadium tetrasulfide (VS4). Chem: A Eur J 21:4639–4645. https://doi.org/10.1002/chem.201406428

    Article  CAS  Google Scholar 

  36. Zhou Y, Li Y, Yang J et al (2016) Conductive polymer-coated VS4 submicrospheres as advanced electrode materials in lithium-ion batteries. ACS Appl Mater Interfaces 8:18797–18805. https://doi.org/10.1021/acsami.6b04444

    Article  CAS  Google Scholar 

  37. Yang G, Zhang B, Feng J et al (2018) High-crystallinity urchin-like VS4 anode for high-performance lithium-ion storage. ACS Appl Mater Interfaces 10:14727–14734. https://doi.org/10.1021/acsami.8b01876

    Article  CAS  Google Scholar 

  38. Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47:558–561. https://doi.org/10.1103/PhysRevB.47.558

    Article  CAS  Google Scholar 

  39. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49:14251–14269. https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  40. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  42. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104. https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  43. Wang Y, Liu Z, Wang C et al (2018) Highly branched VS4 nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv Mater 30:1802563. https://doi.org/10.1002/adma.201802563

    Article  CAS  Google Scholar 

  44. Costentin C, Porter TR, Savéant J-M (2017) How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl Mater Interfaces 9:8649–8658. https://doi.org/10.1021/acsami.6b14100

    Article  CAS  Google Scholar 

  45. Ratha S, Marri SR, Lanzillo NA et al (2015) Supercapacitors based on patronite–reduced graphene oxide hybrids: experimental and theoretical insights. J Mater Chem A 3:18874–18881. https://doi.org/10.1039/C5TA03221K

    Article  CAS  Google Scholar 

  46. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211. https://doi.org/10.1126/science.1249625

    Article  CAS  Google Scholar 

  47. Moosavifard SE, Shamsi J, Altafi MK, Moosavifard ZS (2016) All-solid state, flexible, high-energy integrated hybrid micro-supercapacitors based on 3D LSG/CoNi2S4 nanosheets. Chem Commun 52:13140–13143. https://doi.org/10.1039/C6CC07053A

    Article  CAS  Google Scholar 

  48. Zhang P, Wang L, Wang F et al (2019) A nonaqueous Na-ion hybrid micro-supercapacitor with wide potential window and ultrahigh areal energy density. Batteries Supercaps 2:918–923. https://doi.org/10.1002/batt.201900079

    Article  CAS  Google Scholar 

  49. Li J-C, Gong J, Zhang X et al (2020) Alternate integration of vertically oriented CuSe@FeOOH and CuSe@MnOOH hybrid nanosheets frameworks for flexible in-plane asymmetric micro-supercapacitors. ACS Appl Energy Mater 3:3692–3703. https://doi.org/10.1021/acsaem.0c00150

    Article  CAS  Google Scholar 

  50. Xie Y, Zhang H, Huang H et al (2020) High-voltage asymmetric MXene-based on-chip micro-supercapacitors. Nano Energy 74:104928. https://doi.org/10.1016/j.nanoen.2020.104928

    Article  CAS  Google Scholar 

  51. Jiang Q, Kurra N, Xia C, Alshareef HN (2017) Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy. Adv Energy Mater 7:1601257. https://doi.org/10.1002/aenm.201601257

    Article  CAS  Google Scholar 

  52. Soram BS, Dai JY, Thangjam IS et al (2020) One-step electrodeposited MoS2@Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. J Mater Chem A 8:24040–24052. https://doi.org/10.1039/D0TA07764J

    Article  CAS  Google Scholar 

  53. Chen Q, Jin J, Kou Z et al (2020) Cobalt-doping in hierarchical Ni3S2 nanorod arrays enables high areal capacitance. J Mater Chem A 8:13114–13120. https://doi.org/10.1039/D0TA04483K

    Article  CAS  Google Scholar 

  54. Shao Y, Fu J-H, Cao Z et al (2020) 3D crumpled ultrathin 1T MoS2 for inkjet printing of Mg-Ion asymmetric micro-supercapacitors. ACS Nano 14:7308–7318. https://doi.org/10.1021/acsnano.0c02585

    Article  CAS  Google Scholar 

  55. Ali BA, Metwalli OI, Khalil ASG, Allam NK (2018) Unveiling the effect of the structure of carbon material on the charge storage mechanism in MoS2-based supercapacitors. ACS Omega 3:16301–16308. https://doi.org/10.1021/acsomega.8b02261

    Article  CAS  Google Scholar 

  56. Sarkar D, Das D, Das S et al (2019) Expanding interlayer spacing in MoS2 for realizing an advanced supercapacitor. ACS Energy Lett 4:1602–1609. https://doi.org/10.1021/acsenergylett.9b00983

    Article  CAS  Google Scholar 

  57. Lukatskaya MR, Mashtalir O, Ren CE et al (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505. https://doi.org/10.1126/science.1241488

    Article  CAS  Google Scholar 

  58. Zhan C, Naguib M, Lukatskaya M et al (2018) Understanding the MXene pseudocapacitance. J Phys Chem Lett 9:1223–1228. https://doi.org/10.1021/acs.jpclett.8b00200

    Article  CAS  Google Scholar 

  59. Naguib M, Adams RA, Zhao Y et al (2017) Electrochemical performance of MXenes as K-ion battery anodes. Chem Commun 53:6883–6886. https://doi.org/10.1039/C7CC02026K

    Article  CAS  Google Scholar 

  60. Sonia YK, Paliwal MK, Meher SK (2021) The rational design of hierarchical CoS2/CuCo2S4 for three-dimensional all-solid-state hybrid supercapacitors with high energy density, rate efficiency, and operational stability. Sustain Energy Fuels 5:973–985. https://doi.org/10.1039/D0SE01698E

    Article  CAS  Google Scholar 

  61. Xing L, Owusu KA, Liu X et al (2021) Insights into the storage mechanism of VS4 nanowire clusters in aluminum-ion battery. Nano Energy 79:105384. https://doi.org/10.1016/j.nanoen.2020.105384

    Article  CAS  Google Scholar 

  62. Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened coulomb potential. J Chem Phys 118:8207–8215. https://doi.org/10.1063/1.1564060

    Article  CAS  Google Scholar 

  63. Li S, He J, Nachtigall P et al (2021) Doping isolated one-dimensional antiferromagnetic semiconductor vanadium tetrasulfide (VS4) nanowires with carriers induces half-metallicity. J Mater Chem C 9:3122–3128. https://doi.org/10.1039/D1TC00096A

    Article  CAS  Google Scholar 

  64. Kozlova MN, Enyashin AN, Fedorov VE (2016) Quantum-chemical study of quasi-one-dimensional vanadium and niobium sulfides with Peierls distortion. J Struct Chem 57:1505–1512. https://doi.org/10.1134/S0022476616080035

    Article  CAS  Google Scholar 

  65. Ran J, Gao G, Li F-T et al (2017) Ti 3 C 2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat Commun 8:13907. https://doi.org/10.1038/ncomms13907

    Article  CAS  Google Scholar 

  66. Yang GM, Zhang HZ, Fan XF, Zheng WT (2015) Density functional theory calculations for the quantum capacitance performance of graphene-based electrode material. J Phys Chem C 119:6464–6470. https://doi.org/10.1021/jp512176r

    Article  CAS  Google Scholar 

  67. Pathak M, Jose JR, Chakraborty B, Rout CS (2020) High performance supercapacitor electrodes based on spinel NiCo2O4@MWCNT composite with insights from density functional theory simulations. J Chem Phys 152:064706. https://doi.org/10.1063/1.5138727

    Article  CAS  Google Scholar 

  68. A SRK, Shajahan SA, Chakraborty B, Rout CS (2020) The role of carbon nanotubes in enhanced charge storage performance of VSe 2: experimental and theoretical insight from DFT simulations. RSC Advances 10:31712–31719. https://doi.org/10.1039/D0RA06773C

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by the Department of Science and Technology (DST)-SERB Early Career Research project (Grant No. ECR/2017/001850), DST-Nanomission (DST/NM/NT/2019/205(G), DST/TDT/SHRI-34/2018) and Karnataka Science and Technology Promotion Society (KSTePS/VGST-RGS-F/2018-19/GRD NO. 829/315). BC thanks Dr. Nandini Garg, Dr. T. Sakuntala, Dr. S.M. Yusuf and Dr. A K Mohanty for their support and encouragement. We also acknowledge the BARC Computer Centre supercomputing facility and thank their staff for continuous help and support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brahmananda Chakraborty or Chandra Sekhar Rout.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4181 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Patra, A., Namsheer, K. et al. All-solid-state asymmetric supercapacitors based on VS4 nano-bundles and MXene nanosheets. J Mater Sci 56, 20008–20025 (2021). https://doi.org/10.1007/s10853-021-06537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06537-2

Navigation