Skip to main content
Log in

Growing metal–organic framework nanoparticles on short carbon fibers to improve flame retardancy, smoke suppression and mechanical properties of the flame retardant epoxy composites

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The bimetallic metal–organic framework (CoZn-ZIF) particles of flower bulbs, were grown onto short carbon fibers (SCFs) through an in-situ growth method to prepare CoZn-ZIF@ SCFs. The flame retardant intumescent epoxy resin (EP) composites, were fabricated with CoZn-ZIF@SCFs and ammonium polyphosphate (APP). The limiting oxygen index value of 1wt%CoZn-ZIF@SCFs/4wt%APP/EP composite reached 28.9%, and V-0 rating in UL-94 was attained. Meanwhile, the peak of heat release rate and total heat release was reduced 57.6% and 30.4%, compared with pristine epoxy resin. The analysis of pyrolysis gases and residual char, showed that the improvement in flame retardancy and smoke suppression was due to the catalytic carbonization effect of CoZn-ZIF, along with the strengthening action of the residual layer by SCFs, which led to the generation of more residual char and made it more stable. The improvement in mechanical properties of the flame retardant composite, was due to the reinforcement effects of CoZn-ZIF@SCFs, and its action of interfacial adjustment. This research solved the contradiction between the flame retardancy and mechanical properties of epoxy resin, and proposed a new method to prepare flame-retardant epoxy resin with high performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Luo JT, Yang SR, Lei LQ, Zhao JQ, Tong Z (2017) Toughening, synergistic fire retardation and water resistance of polydimethylsiloxane grafted graphene oxide to epoxy nanocomposites with trace phosphorus. Compos Part A-Appl S 100:275–284. https://doi.org/10.1016/j.compositesa.2017.05.019

    Article  CAS  Google Scholar 

  2. Liu JJ, Wang W, Yuen RKK, Gui Z, Hu Y (2018) 1/2D SnO2 nanowires on MnO2 nanosheets hybrid architecture for reducing fire hazards of epoxy nanocomposites. Compos Part A-Appl S 107:461–470. https://doi.org/10.1016/j.compositesa.2018.01.026

    Article  CAS  Google Scholar 

  3. Kandola BK, Horrocks AR, Myler P, Blair D (2003) New developments in flame retardancy of glass-reinforced epoxy composites. J Appl Polym Sci 88(10):2511–2521. https://doi.org/10.1002/app.11909

    Article  CAS  Google Scholar 

  4. Huang Z, Jiang S-D, Hong N, Zhu Y, Hou Y, Hu Y (2017) Synthesis of highly active HM-SiO2@ CeO2/NiO hybrids for fire safety applications of epoxy resins. Compos Part A-Appl S 95:337–345. https://doi.org/10.1016/j.compositesa.2017.01.025

    Article  CAS  Google Scholar 

  5. Godara A, Gorbatikh L, Kalinka G, Warrier A, Rochez O, Mezzo L, Luizi F, van Vuure AW et al (2010) Interfacial shear strength of a glass fiber/epoxy bonding in composites modified with carbon nanotubes. Compos Sci Technol 70(9):1346–1352. https://doi.org/10.1016/j.compscitech.2010.04.010

    Article  CAS  Google Scholar 

  6. Davis DC, Wilkerson JW, Zhu J, Hadjiev VG (2011) A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol 71(8):1089–1097. https://doi.org/10.1016/j.compscitech.2011.03.014

    Article  CAS  Google Scholar 

  7. Wang C, Xie Z, deKrafft KE, Lin W (2011) Doping metal–organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc 133(34):13445–13454. https://doi.org/10.1021/ja203564w

    Article  CAS  Google Scholar 

  8. Millward AR, Yaghi OM (2005) Metal− organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127(51):17998–17999. https://doi.org/10.1021/ja0570032

    Article  CAS  Google Scholar 

  9. Sai T, Ran SY, Guo ZH, Fang ZP (2019) A Zr-based metal organic frameworks towards improving fire safety and thermal stability of polycarbonate. Compos Part B-Eng 176:107198. https://doi.org/10.1016/j.compositesb.2019.107198

    Article  CAS  Google Scholar 

  10. Qi XL, Zhou DD, Zhang J, Hu S, Haranczyk M, Wang DY (2019) Simultaneous improvement of mechanical and fire-safety properties of polymer composites with phosphonate-loaded MOF additives. ACS Appl Mater Inter 11(22):20325–20332. https://doi.org/10.1021/acsami.9b02357

    Article  CAS  Google Scholar 

  11. Hou Y, Hu W, Gui Z, Hu Y (2017) Preparation of metal–organic frameworks and their application as flame retardants for polystyrene. Ind Eng Chem Res 56(8):2036–2045. https://doi.org/10.1021/acs.iecr.6b04920

    Article  CAS  Google Scholar 

  12. Shi X, Dai X, Cao Y, Li J, Huo C, Wang X (2017) Degradable poly(lactic acid)/metal–organic framework nanocomposites exhibiting good mechanical, flame retardant, and dielectric properties for the fabrication of disposable electronics. Ind Eng Chem Res 56(14):3887–3894. https://doi.org/10.1021/acs.iecr.6b04204

    Article  CAS  Google Scholar 

  13. Yuan BH, Fan A, Yang M, Chen XF, Hu Y, Bao CL, Jiang SH, Niu Y et al (2017) The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stabil 143:42–56. https://doi.org/10.1016/j.polymdegradstab.2017.06.015

    Article  CAS  Google Scholar 

  14. Wang X, Kalali EN, Wan JT, Wang DY (2017) Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci 69:22–46. https://doi.org/10.1016/j.progpolymsci.2017.02.001

    Article  CAS  Google Scholar 

  15. Perez RM, Sandler JKW, Altstadt V, Hoffmann T, Pospiech D, Ciesielski M, Doring M, Braun U et al (2006) Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites. J Mater Sci 41(15):4981–4984. https://doi.org/10.1007/s10853-006-0134-4

    Article  CAS  Google Scholar 

  16. Nie H-J, Shen X-J, Tang B-L, Dang C-Y, Yang S, Fu S-Y (2019) Effectively enhanced interlaminar shear strength of carbon fiber fabric/epoxy composites by oxidized short carbon fibers at an extremely low content. Compos Sci Technol 183:107803. https://doi.org/10.1016/j.compscitech.2019.107803

    Article  CAS  Google Scholar 

  17. Peng Q-Y, Li Y-B, He X-D, Lv H-Z, Hu P-A, Shang Y-Y, Wang C, Wang R-G, Sritharan T, Du S-Y (2013) Interfacial enhancement of carbon fiber composites by poly(amido amine) functionalization. Compos Sci Technol 74:37–42. https://doi.org/10.1016/j.compscitech.2012.10.005

    Article  CAS  Google Scholar 

  18. Tan Y, Shao Z-B, Chen X-F, Long J-W, Chen L, Wang Y-Z (2015) Novel multifunctional organic–inorganic hybrid curing agent with high flame-retardant efficiency for epoxy resin. ACS appl Mater Inter 7(32):17919–17928. https://doi.org/10.1021/acsami.5b04570

    Article  CAS  Google Scholar 

  19. Qiu S, Ma C, Wang X, Zhou X, Feng X, Yuen RKK, Hu Y (2018) Melamine-containing polyphosphazene wrapped ammonium polyphosphate: a novel multifunctional organic-inorganic hybrid flame retardant. J Hazard Mater 344:839–848. https://doi.org/10.1016/j.jhazmat.2017.11.018

    Article  CAS  Google Scholar 

  20. Lim WKP, Mariatti M, Chow WS, Mar KT (2012) Effect of intumescent ammonium polyphosphate (APP) and melamine cyanurate (MC) on the properties of epoxy/glass fiber composites. Compos Part B-Eng 43(2):124–128. https://doi.org/10.1016/j.compositesb.2011.11.013

    Article  CAS  Google Scholar 

  21. Gu JW, Zhang GC, Dong SL, Zhang QY, Kong J (2007) Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings. Surf Coat Tech 201(18):7835–7841. https://doi.org/10.1016/j.surfcoat.2007.03.020

    Article  CAS  Google Scholar 

  22. Zhao H, Jiang Y, Chen P, Fu J, Lu X, Hou Z (2018) CoZn-ZIF-derived ZnCo2O4-framework for the synthesis of alcohols from glycerol. Green Chem 20(18):4299–4307. https://doi.org/10.1039/C8GC01768A

    Article  CAS  Google Scholar 

  23. Alongi J, Han ZD, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review Prog Polym Sci 51:28–73. https://doi.org/10.1016/j.progpolymsci.2015.04.010

    Article  CAS  Google Scholar 

  24. Yu B, Shi YQ, Yuan BH, Qiu SL, Xing WY, Hu WZ, Song L, Lo SM et al (2015) Enhanced thermal and flame retardant properties of flame-retardant-wrapped graphene/epoxy resin nanocomposites. J Mater Chem A 3(15):8034–8044. https://doi.org/10.1039/c4ta06613h

    Article  CAS  Google Scholar 

  25. Guo YQ, Bao CL, Song L, Yuan BH, Hu Y (2011) In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on the flame behavior. Ind Eng Chem Res 50(13):7772–7783. https://doi.org/10.1021/ie200152x

    Article  CAS  Google Scholar 

  26. Bao CL, Guo YQ, Song L, Kan YC, Qian XD, Hu Y (2011) In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. J Mater Chem 21(35):13290–13298. https://doi.org/10.1039/c1jm11434d

    Article  CAS  Google Scholar 

  27. Zhang WC, He XD, Song TL, Jiao QJ, Yang RJ (2014) The influence of the phosphorus-based flame retardant on the flame retardancy of the epoxy resins. Polym Degrad Stabil 109:209–217. https://doi.org/10.1016/j.polymdegradstab.2014.07.023

    Article  CAS  Google Scholar 

  28. Wang JS, Liu Y, Zhao HB, Liu J, Wang DY, Song YP, Wang YZ (2009) Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym Degrad Stabil 94(4):625–631. https://doi.org/10.1016/j.polymdegradstab.2009.01.006

    Article  CAS  Google Scholar 

  29. Xu B, Xu W, Wang G, Liu L, Xu J (2018) Zeolitic imidazolate frameworks-8 modified graphene as a green flame retardant for reducing the fire risk of epoxy resin. Polym Adv Technol 29(6):1733–1743. https://doi.org/10.1002/pat.4278

    Article  CAS  Google Scholar 

  30. Li AJ, Xu WZ, Chen R, Liu YC, Li W (2018) Fabrication of zeolitic imidazolate frameworks on layered double hydroxide nanosheets to improve the fire safety of epoxy resin. Compos Part A-Appl S 112:558–571. https://doi.org/10.1016/j.compositesa.2018.07.001

    Article  CAS  Google Scholar 

  31. Lou XB, Ning YQ, Li C, Hu XS, Shen M, Hu BW (2018) Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms. Sci China Mater 61(8):1040–1048. https://doi.org/10.1007/s40843-017-9200-5

    Article  CAS  Google Scholar 

  32. Li P, Zeng HC (2016) Immobilization of metal–organic framework nanocrystals for advanced design of supported nanocatalysts. ACS Appl Mater Inter 8(43):29551–29564. https://doi.org/10.1021/acsami.6b11775

    Article  CAS  Google Scholar 

  33. Jiao C, Li M, Ma R, Wang C, Wu Q, Wang Z (2016) Preparation of a Co-doped hierarchically porous carbon from Co/Zn-ZIF: an efficient adsorbent for the extraction of trizine herbicides from environment water and white gourd samples. Talanta 152:321–328. https://doi.org/10.1016/j.talanta.2016.02.005

    Article  CAS  Google Scholar 

  34. Hachuła B, Nowak M, Kusz J (2009) Crystal and molecular structure analysis of 2-methylimidazole. J Chem Crystallogr 40(3):201–206. https://doi.org/10.1007/s10870-009-9634-9

    Article  CAS  Google Scholar 

  35. Tang J, Salunkhe RR, Liu J, Torad NL, Imura M, Furukawa S, Yamauchi Y (2015) Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J Am Chem Soc 137(4):1572–1580. https://doi.org/10.1021/ja511539a

    Article  CAS  Google Scholar 

  36. Zhang X, Zhang W, Zeng G, Du J, Zhang W, Yang R (2019) The effect of different smoke suppressants with APP for enhancing the flame retardancy and smoke suppression on vinyl ester resin. Polym Eng Sci 60(2):314–322. https://doi.org/10.1002/pen.25286

    Article  CAS  Google Scholar 

  37. Li XL, Zhang FH, Jian RK, Ai YF, Ma JL, Hui GJ, Wang DY (2019) Influence of eco-friendly calcium gluconate on the intumescent flame-retardant epoxy resin: flame retardancy, smoke suppression and mechanical properties. Compos Part B-Eng 176:107200. https://doi.org/10.1016/j.compositesb.2019.107200

    Article  CAS  Google Scholar 

  38. Zhang N, Zhang J, Yan H, Guo X, Sun Q, Guo R (2019) A novel organic-inorganic hybrid K-HBPE@APP performing excellent flame retardancy and smoke suppression for polypropylene. J Hazard Mater 373:856–865. https://doi.org/10.1016/j.jhazmat.2019.04.016

    Article  CAS  Google Scholar 

  39. Xia WJ, Wang SW, Xu T, Jin GL (2021) Flame retarding and smoke suppressing mechanisms of nano composite flame retardants on bitumen and bituminous mixture. Constr Build Mater 266:121203. https://doi.org/10.1016/j.conbuildmat.2020.121203

    Article  CAS  Google Scholar 

  40. Zheng Y, Lu Y, Zhou K (2019) A novel exploration of metal–organic frameworks in flame-retardant epoxy composites. J Thermal Anal Calorim 138(2):905–914. https://doi.org/10.1007/s10973-019-08267-9

    Article  CAS  Google Scholar 

  41. Zhang J, Li Z, Qi XL, Zhang W, Wang DY (2020) Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Compos Part B-Eng 188:107881. https://doi.org/10.1016/j.compositesb.2020.107881

    Article  CAS  Google Scholar 

  42. Xu ZM, Duan LJ, Hou YB, Chu FK, Jiang SD, Hu WZ, Song L (2020) The influence of carbon-encapsulated transition metal oxide microparticles on reducing toxic gases release and smoke suppression of rigid polyurethane foam composites. Compos Part a-Appl S 131:105815. https://doi.org/10.1016/j.compositesa.2020.105815

    Article  CAS  Google Scholar 

  43. Xu WZ, Chen R, Du YP, Wang GS (2020) Design water-soluble phenolic/zeolitic imidazolate framework-67 flame retardant coating via layer-by-layer assembly technology: enhanced flame retardancy and smoke suppression of flexible polyurethane foam. Polym Degrad Stabil 176:109152. https://doi.org/10.1016/j.polymdegradstab.2020.109152

    Article  CAS  Google Scholar 

  44. Wang N, Teng H, Zhang X, Zhang J, Li L, Zhang J, Fang Q (2019) Syntesihs of a carrageenan-iron complex and its effect on flame retardancy and smoke suppression for waterborne epoxy. Polymers 11(10):1677. https://doi.org/10.3390/polym11101677

    Article  CAS  Google Scholar 

  45. Wang H, Li S, Zhu ZM, Yin XZ, Wang LX, Weng YX, Wang XY (2021) A novel DOPO-based flame retardant containing benzimidazolone structure with high charring ability towards low flammability and smoke epoxy resins. Polym Degrad Stabil 183:109426. https://doi.org/10.1016/j.polymdegradstab.2020.109426

    Article  CAS  Google Scholar 

  46. Panapitiya NP, Wijenayake SN, Huang Y, Bushdiecker D, Nguyen D, Ratanawanate C, Kalaw GJ, Gilpin CJ et al (2014) Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs). Polymer 55(8):2028–2034. https://doi.org/10.1016/j.polymer.2014.03.008

    Article  CAS  Google Scholar 

  47. Tang T, Chen X, Meng X, Chen H, Ding Y (2005) Synthesis of multiwalled carbon nanotubes by catalytic combustion of polypropylene. Angew Chem Int Edit 44(10):1517–1520. https://doi.org/10.1002/anie.200461506

    Article  CAS  Google Scholar 

  48. Xu W, Zhang B, Wang X, Wang G, Ding D (2018) The flame retardancy and smoke suppression effect of a hybrid containing CuMoO4 modified reduced graphene oxide/layered double hydroxide on epoxy resin. J Hazard Mater 343:364–375. https://doi.org/10.1016/j.jhazmat.2017.09.057

    Article  CAS  Google Scholar 

  49. Zhou K, Tang G, Gao R, Jiang S (2018) In situ growth of 0D silica nanospheres on 2D molybdenum disulfide nanosheets: towards reducing fire hazards of epoxy resin. J Hazard Mater 344:1078–1089. https://doi.org/10.1016/j.jhazmat.2017.11.059

    Article  CAS  Google Scholar 

  50. Xu X, Cao R, Jeong S, Cho J (2012) Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett 12(9):4988–4991. https://doi.org/10.1021/nl302618s

    Article  CAS  Google Scholar 

  51. Mahata P, Sarma D, Madhu C, Sundaresen A, Natarajan S (2011) CoMn2O4 spinel from a MOF: synthesis, structure and magnetic studies. Dalton T 40(9):1952–1960. https://doi.org/10.1039/C0DT01137A

    Article  CAS  Google Scholar 

  52. Hou Y, Liu L, Qiu S, Zhou X, Gui Z, Hu Y (2018) DOPO-modified two-dimensional Co-based metal-organic framework: preparation and application for enhancing fire safety of poly(lactic acid). ACS Appl Mater Inter 10(9):8274–8286. https://doi.org/10.1021/acsami.7b19395

    Article  CAS  Google Scholar 

  53. Zhang J, Li Z, Zhang L, García Molleja J, Wang D-Y (2019) Bimetallic metal-organic frameworks and graphene oxide nano-hybrids for enhanced fire retardant epoxy composites: a novel carbonization mechanism. Carbon 153:407–416. https://doi.org/10.1016/j.carbon.2019.07.003

    Article  CAS  Google Scholar 

  54. Zhang L, Chen S, Pan Y-T, Zhang S, Nie S, Wei P, Zhang X, Wang R et al (2019) Nickel metal–organic framework derived hierarchically mesoporous nickel phosphate toward smoke suppression and mechanical enhancement of intumescent flame retardant wood fiber/poly(lactic acid) composites. ACS Sustain Chem Eng 7(10):9272–9280. https://doi.org/10.1021/acssuschemeng.9b00174

    Article  CAS  Google Scholar 

  55. Li WX, Shi CB, Shan MJ, Guo QW, Xu ZW, Wang Z, Yang CY, Mai W, Niu JR (2013) Influence of silanized low-dimensional carbon nanofillers on mechanical, thermomechanical, and crystallization behaviors of poly(L-lactic acid) composites – A comparative study. J Appl Polym Sci 130:1194–1202. https://doi.org/10.1002/app.39259

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Support Program (Social Development) of Jiangsu Province of China (BE 2013714), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinlong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that can have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wang, K., Li, J. et al. Growing metal–organic framework nanoparticles on short carbon fibers to improve flame retardancy, smoke suppression and mechanical properties of the flame retardant epoxy composites. J Mater Sci 56, 19899–19914 (2021). https://doi.org/10.1007/s10853-021-06507-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06507-8

Navigation