Skip to main content
Log in

Crystal and Molecular Structure Analysis of 2-Methylimidazole

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structure of the title compound, C4H6N2, has been determined using X-ray diffraction at 100 K. The crystal of 2-methylimidazole is in orthorhombic crystal system with space group P212121 (Z = 4), lattice parameters: a = 5.9957(12) Å, b = 8.1574(16) Å and c = 9.7010(19) Å, V = 474.47(16) Å. The molecule of 2-methylimidazole is approximately planar. The maximum deviation from the least-squares imidazole plane, calculated for all non-H atoms is 0.006(2) Å. N–H···N hydrogen bonds link the molecules together, forming infinite chains of hydrogen bond pattern C(4) defined by the graph-set analysis. Two chains, which are almost antiparallel to each other, pass through each unit cell. The dihedral angle between the mean planes of molecules forming these intersecting chains is 76.90(4)°. No evidence was found for disorder of the hydrogen-bonding proton between the atoms N1 and N3. The significance of this study lies in the analysis of the interactions occurring via hydrogen bonds in this structure, as well as, in the comparison drawn between the molecular structure of 2-methylimidazole and those of several of other imidazole derivatives possessing a hydrogen atom in the N1 position.

Index Abstract

The article presents the detailed description of the crystal structure of 2-methylimidazole including the information on the symmetry of the analyzed crystal, the values of the bond distances and the angles as well as hydrogen bond interaction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chan PC (2004) Toxic Rep Ser 67:1–G12

    Google Scholar 

  2. Sanders JM, Griffin RJ, Burka LT, Matthews HB (1998) J Toxicol Environ Health A54:121–132

    Google Scholar 

  3. Johnson JD, Reichelderfer D, Zutshi A, Graves S, Walters D, Smith J (2002) Toxicol Environ Health A65:869–879

    Article  Google Scholar 

  4. Chan PC, Sills RC, Kissling GE, Nyska A, Richter W (2008) Arch Toxicol 6:399–412

    Article  Google Scholar 

  5. Moore-Testa P, Saint-Jalm Y, Testa A (1984) J Chromatogr 290:263–274

    Article  Google Scholar 

  6. Mukherjee A, Kumar S, Seth M, Bhaduri AP (1989) Indian J Chem B28:391–396

    Google Scholar 

  7. Norman SM, Bennet RD, Poling SM, Maier VP, Nelson MD (1986) Plant Physiol 80:122–125

    Article  CAS  Google Scholar 

  8. Purohit M, Srivastava SK (1991) Proc Natl Acad Sci India A61:461–466

    Google Scholar 

  9. Khabnadideh S, Rezaei Z, Khalafi-Nezhad A, Bahrinajafi R, Mohamadi R, Farrokhroz AA (2003) Bioorg Med Chem Lett 13:2863–2865

    Article  CAS  Google Scholar 

  10. Wilkinson CF, Hetnarski K (1974) Biochem Pharmacol 23:2377–2387

    Article  CAS  Google Scholar 

  11. Flakus HT, Bryk A (1995) J Mol Struct 372:215–227

    Article  CAS  Google Scholar 

  12. Flakus HT, Bryk A (1995) J Mol Struct 372:229–240

    Article  CAS  Google Scholar 

  13. Flakus HT, Bryk A (1996) J Mol Struct 385:35–48

    Article  CAS  Google Scholar 

  14. Flakus HT, Miros A, Jones PG (2002) Spectrochim Acta A58:225–237

    Google Scholar 

  15. Flakus HT, Michta A (2004) J Mol Struct 707:17–31

    Article  CAS  Google Scholar 

  16. Flakus HT, Hachuła B (2008) not published results

  17. Martinez-Carrera S (1966) Acta Cryst 20:783–789

    Article  CAS  Google Scholar 

  18. Craven BM, McMullan RK, Bell JD, Freeman HC (1977) Acta Cryst B33:2585–2589

    CAS  Google Scholar 

  19. McMullan RK, Epstein J, Ruble JR, Craven BM (1979) Acta Cryst B35:688–691

    CAS  Google Scholar 

  20. Oxford Diffraction (2006) CrysAlis CCD & CrysAlis RED. Version 1.171.29. Oxford Diffraction Ltd, Wrocław, Poland

    Google Scholar 

  21. Sheldrick GM (2008) SHELX-97, program package for crystal structure solution and refinement. Acta Cryst A64:112–122

    CAS  Google Scholar 

  22. Farrugia LJ (1997) J Appl Cryst 30:565

    Article  CAS  Google Scholar 

  23. Larsen IK (1984) Acta Cryst C40:285–287

    Google Scholar 

  24. Ségalas I, Poitras J, Beauchamp AL (1992) Acta Cryst C48:295–298

    Google Scholar 

  25. Blaton NM, Peeters OM, De Ranter CJ (1979) Acta Cryst B35:753–755

    CAS  Google Scholar 

  26. Simon K, Schawartz J, Kálmán A (1980) Acta Cryst B36:2323–2328

    CAS  Google Scholar 

  27. Olszak TA, Peeters OM, Blaton NM, De Ranter CJ (1994) Acta Cryst C50:558–559

    CAS  Google Scholar 

  28. Kubicki M, Wagner P (2007) Acta Cryst C63:o454–o457

    CAS  Google Scholar 

  29. Kubicki M, Wagner P (2007) Acta Cryst E63:o3120

    CAS  Google Scholar 

  30. Kubicki M, Wagner P (2007) Acta Cryst E63:o3454

    CAS  Google Scholar 

  31. Wagner P, Kubicki M (2007) Acta Cryst E63:o3083

    CAS  Google Scholar 

  32. Wagner P, Kubicki M (2007) Acta Cryst E63:o3587

    CAS  Google Scholar 

  33. Kálmán A, Van Meurs F, Tóth J (1980) Cryst Struct Commun 9:709–712

    Google Scholar 

  34. Gilardi R, Evans RN (2003) Acta Cryst E59:o1349–o1350

    CAS  Google Scholar 

  35. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Cryst 39:453–457

    Article  CAS  Google Scholar 

  36. Etter MC, MacDonald JC, Bernstein J (1990) Acta Cryst B46:256–262

    CAS  Google Scholar 

  37. Bernstein J, Davies RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

  38. Motherwell WDS, Shields GP, Allen FH (1999) Acta Cryst B55:1044–1056

    CAS  Google Scholar 

  39. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University, New York

    Google Scholar 

  40. Steiner T (2002) Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  41. Wagner P, Świerczek K, Kubicki M (2007) Acta Cryst C63:o445–o447

    CAS  Google Scholar 

  42. Less GB, Rasmussen PG, Kampf JW (2005) Acta Cryst E61:o1704–o1706

    CAS  Google Scholar 

  43. Schuster P, Mikenda W (1999) Hydrogen bond research, Monatshefte fűr chemie, Chemical Monthly, Vol. 130, No. 8. Springer, Vien, New York

    Google Scholar 

  44. Schuster P, Zundel G, Sandorfy C (1976) The hydrogen bond. Recent developments in the theory and experiment, North-Holland, Amsterdam

    Google Scholar 

  45. Goddard R, Heinemann O, Krűger C (1997) Acta Cryst C53:1846–1850

    CAS  Google Scholar 

  46. Berthou J, Elguero J, Rérat C (1970) Acta Cryst B26:1880–1881

    Google Scholar 

  47. Jeffrey GA, Ruble JR, Yates JH (1983) Acta Cryst B39:388–394

    CAS  Google Scholar 

  48. Escande A, Lapasset J (1974) Acta Cryst B30:2009–2012

    CAS  Google Scholar 

Download references

Acknowledgments

The work of the author (B. H) was partially supported by PhD scholarship granted in 2008 within the framework of the ‘University as a Partner of the Economy Based on Science’ (UPGOW) project, subsidized by the European Social Fund (EFS) of the European Union. The authors are very grateful to Doctor hab. Roman Wrzalik from University of Silesia, Institute of Physics, for Raman spectra measurement of 2-methylimidazole sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Hachuła.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hachuła, B., Nowak, M. & Kusz, J. Crystal and Molecular Structure Analysis of 2-Methylimidazole. J Chem Crystallogr 40, 201–206 (2010). https://doi.org/10.1007/s10870-009-9634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9634-9

Keywords

Navigation