Skip to main content
Log in

Saturated and unsaturated aliphatic side chain-appended naphthalenediimide derivatives: synthesis and structure property relationship

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Previous studies have shown influence of aliphatic side chain length and type on the transport properties of naphthalenediimide (NDI) materials by affecting molecular arrangement. There is lack of comparative study on the presence or absence of unsaturation in side chain and its effect on optical and electronic properties of NDI. The present work focuses on the structure–property relationship of four NDI derivatives bearing octyl (C8, OctA-NDI), hexadecyl (C16, HD-NDI), octadecyl (C18, ODA-NDI) and oleyl (C18-un, unsaturated, OLA-NDI) chain on imide-nitrogen. The self-assembling behaviour of the molecules is studied in concentrated solutions as fresh and aged samples in four different solvents by absorbance and emission spectroscopy. With increase in alkyl chain length, the aggregation behaviour is observed to increase. Very interestingly introduction of unsaturation in side chain reduces aggregation and restores the monomeric properties. Self-assembled microstructures formation was studied by scanning electron microscopy where all the four materials show different types of self-assembly formation. Finally, we compared the thermally activated electron conductivity and electron mobility of NDI derivatives, where also the side chain structure clearly influences the electron transport. Electron mobility decreases on increasing chain length from C8 to C18 and again increases in C18-un. A rationale for the structure–property relationship has been given based on the molecular packing and intermolecular ππ interactions. This study contributes significantly towards designing new NDI derivatives bearing long side chains with hampered aggregation for niche applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Waiselewski MR, Marder SR (2011) Rylene and related diimides for organic electronics. Adv Mater 23:268–284. https://doi.org/10.1002/adma.201001402

    Article  CAS  Google Scholar 

  2. Sun Y, Di CA, Xu W, Zhu D (2019) Advances in n-type organic thermoelectric materials and devices. Adv Electron Mater 5:1800825. https://doi.org/10.1002/aelm.201800825

    Article  CAS  Google Scholar 

  3. Quinn JTE, Zhu J, Li X, Wang J, Li Y (2017) Recent progress in developing n-type organic semiconductors for organic field effect transistors. J Mater Chem C 5:8654–8681. https://doi.org/10.1039/C7TC01680H

    Article  CAS  Google Scholar 

  4. Katz HE, Lovinger AJ, Kloc C, Siegrist T, Li W, Lin YY, Dodabalapur A (2000) A soluble and air-stable organic semiconductor with high electron mobility. Nature 404:478–481. https://doi.org/10.1038/35006603

    Article  CAS  Google Scholar 

  5. Bhosale SV, Jani CH, Langford SJ (2008) Chemistry of naphthalene diimides. Chem Soc Rev 37:331–342. https://doi.org/10.1039/B615857A

    Article  CAS  Google Scholar 

  6. Chen J, Zhuang X, Huang W, Su M, Feng L, Swick SM, Wang G, Chen Y, Yu J, Guo X, Marks TJ, Facchetti A (2020) π Extended naphthalene diimide derivatives for N-type semiconducting polymers. Chem Mater 32:5317–5326. https://doi.org/10.1021/acs.chemmater.0c01397

    Article  CAS  Google Scholar 

  7. Kumari N, Naqvi S, Kumar R (2018) Naphthalene diimide self-assembled ribbons with high electrical conductivity and mobility without doping. J Mater Sci 53:4046–4055. https://doi.org/10.1007/s10853-017-1829-4

    Article  CAS  Google Scholar 

  8. Kobaisi MA, Bhosale SV, Latham K, Raynor A, Bhosale SV (2016) Functional naphthalene diimides: synthesis, properties, and applications. Chem Rev 116:11685–11796. https://doi.org/10.1021/acs.chemrev.6b00160

    Article  CAS  Google Scholar 

  9. Lin CC, Velusamy M, Chou HH, Lin JT, Chou PT (2010) Synthesis and characterization of naphthalene diimide (NDI)-based near infrared chromophores with two-photon absorbing properties. Tetrahedron 66:8629–8634. https://doi.org/10.1016/j.tet.2010.09.041

    Article  CAS  Google Scholar 

  10. Reib B, Wagenknecht HA (2019) Naphthalene diimides with improved solubility for visible light photoredox catalysis. BeilsteinJ Org Chem 15:2043–2051. https://doi.org/10.3762/bjoc.15.201

    Article  CAS  Google Scholar 

  11. Wang S, Shaw J, Han Y, Fei Z, Glocklhofer F, Heeney M (2020) Multibranched aliphatic side chains for π-conjugated polymers with a high density of ‘unshielded’ aromatics. Chem Commun 56:12138–12141. https://doi.org/10.1039/D0CC04967K

    Article  CAS  Google Scholar 

  12. Erten S, Posokhov Y, Alp S, Icli S (2005) The study of the solubility of naphthalene diimides with various bulky flanking substituents in different solvents by UV–Vis spectroscopy. Dyes Pigm 64:171–178. https://doi.org/10.1016/j.dyepig.2004.04.011

    Article  CAS  Google Scholar 

  13. Welford A, Maniam S, Gann E, Jiao X, Thomsen L, Langford SJ, McNeill CR (2019) Influence of alkyl side-chain type and length on the thin film microstructure and OFET performance of naphthalene diimide-based organic semiconductors. Org Electron 75:105378. https://doi.org/10.1016/j.orgel.2019.105378

    Article  CAS  Google Scholar 

  14. Kumari N, Naqvi S, Ahuja M, Bhardwaj K, Kumar R (2020) Facile synthesis of naphthalene diimide (NDI) derivatives: aggregation-induced emission, photophysical and transport properties. J Mater Sci Mater Electron 31:4310–4322. https://doi.org/10.1007/s10854-020-02986-8

    Article  CAS  Google Scholar 

  15. Birajdar SS, Naqvi S, More KS, Puyad AL, Kumar R, Bhosale SV, Bhosale SV (2021) Influences of the number of 2-ethylhexylamine chain substituents on electron transport characteristics of core-substituted naphthalene diimide analogues. New J Chem 45:1590–1600. https://doi.org/10.1039/D0NJ05045H

    Article  CAS  Google Scholar 

  16. Liu W, Shaikh DB, Rao PS, Bhosale RS, Said AA, Mak AM, Wang Z, Zhao M, Gao W, Chen B, Lam YM, Fan W, Bhosale SV, Bhosale SV, Zhang Q (2020) Molecular aggregation of Naphthalene diimide (NDI) derivatives in electron transport layers of inverted perovskite solar cells and their influence on the device performance. Chem Asian J 15:112–121. https://doi.org/10.1002/asia.201901452

    Article  CAS  Google Scholar 

  17. Kurdi KA, McCarthy DP, McMeekin DP, Furer SO, Tremblay MH, Barlow S, Bach U, Marder SR (2021) A naphthalene diimide side-chain polymer as an electron-extraction layer for stable perovskite solar cells. Mater Chem Front 5:450–457. https://doi.org/10.1039/D0QM00685H

    Article  Google Scholar 

  18. Bhardwaj K, Naqvi S, Kumar R (2021) Comparative study of aliphatic versus aromatic substituted perylenediimide as electron transport layer material. Sol Energy 220:608–616. https://doi.org/10.1016/j.solener.2021.04.010

    Article  CAS  Google Scholar 

  19. Kim HI, Kim MJ, Choi K, Lim C, Kim YH, Kwon SK, Park T (2018) Improving the performance and stability of inverted planar flexible perovskite solar cells employing a novel NDI-based polymer as the electron transport layer. Adv Energy Mater 5:1702872. https://doi.org/10.1002/aenm.201702872

    Article  CAS  Google Scholar 

  20. Berrocal JA, Heideman GH, Waal BFMD, Enache M, Havenith RWA, Stohr M, Meijer EW, Feringa BL (2020) Engineering long-range order in supramolecular assemblies on surfaces: the paramount role of internal double bonds in discrete long-chain naphthalenediimides. J Am Chem Soc 142:4070–4078. https://doi.org/10.1021/jacs.0c00765

    Article  CAS  Google Scholar 

  21. Berrocal JA, Heideman GH, Waal BFMD, Meijer EW, Feringa BL (2020) Combinatorial selection among geometrical isomers of discrete long-carbon-chain naphthalenediimides induces local order at the liquid/solid interface. ACS Nano 14:13865–13875. https://doi.org/10.1021/acsnano.0c06274

    Article  CAS  Google Scholar 

  22. Heideman GH, Berrocal JA, Stohr M, Meijer EW, Feringa BL (2021) Stepwise adsorption of alkoxypyrene derivatives onto a lamellar, non porous naphthalenediimidetemplate on HOPG. Chem Eur J 27:207–211. https://doi.org/10.1002/chem.202004008

    Article  CAS  Google Scholar 

  23. Ke H, Weng LJ, Chen SY, Chen JZ, Lin MJ (2015) Napthalenediimidecocrystals: a facile approach to tune the optical properties. Dyes Pigments 113:318–324. https://doi.org/10.1016/j.dyepig.2014.08.020

    Article  CAS  Google Scholar 

  24. Barros TC, Brochsztain S, Toscano VG, Filho PB, Politi MJ (1997) Photophysical characterization of a 1,4,5,8-naphthalenediimide derivative. J Photochem Photobiol A Chem 111:97–104. https://doi.org/10.1016/S1010-6030(97)00205-0

    Article  CAS  Google Scholar 

  25. Kar H, Gehrig DW, Laquai F, Ghosh S (2015) J-aggregation, impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide. Nanoscale 7:6729–6736. https://doi.org/10.1039/C5NR00483G

    Article  CAS  Google Scholar 

  26. Naqvi S, Kumar M, Kumar R (2019) Facile synthesis and evaluation of electron transport and photophysical properties of photoluminescent PDI derivatives. ACS Omega 4:19735–19745. https://doi.org/10.1021/acsomega.9b02514

    Article  CAS  Google Scholar 

  27. Miao X, Chen C, Zhou J, Deng W (2010) Influence of hydrogen bonds and double bonds on the alkane and alkene derivatives self-assembled monolayers on HOPG surface: STM observation and computer simulation. Appl Surf Sci 256:4647–4655. https://doi.org/10.1016/j.apsusc.2010.02.065

    Article  CAS  Google Scholar 

  28. Wang FX, Liu YQ, Qiu S, Pan GB (2014) Solvent effect on hierarchical assembly of 2-amino octane-functionalized naphthalenediimide. RSC Adv 201(4):6009–6013. https://doi.org/10.1039/C3RA45372C

    Article  Google Scholar 

  29. Balzani V (2003) Photochemical molecular devices. Photochem Photobiol Sci 2:459–476. https://doi.org/10.1039/B300075N

    Article  CAS  Google Scholar 

  30. Ghule NV, Bhosale RS, Bhosale SV, Srikanth T, Rao NVS, Bhosale SV (2018) Synthesis and liquid crystalline properties of unsymmetrically substituted naphthalenediimides with a polar head group: effect of amide hydrogen bonding and alkyl chain length. Chem Open 7:61–67. https://doi.org/10.1002/open.201700151

    Article  CAS  Google Scholar 

  31. Fishchuk II, Kadashchuk A, Hoffmann ST, Athanasopoulos S, Genoe J, Bassler H, Kohler A (2013) Unified description for hopping transport of organic semiconductors including both energetic disorder and polaronic contributions. Phys Rev B 88:125202. https://doi.org/10.1103/PhysRevB.88.125202

    Article  CAS  Google Scholar 

  32. Lu N, Li L, Banerjee W, Sun P, Gao N, Liu M (2015) Charge carrier hopping transport based on Marcus theory and variable range hopping theory in organic semiconductors. J Appl Phys 118:045701. https://doi.org/10.1063/1.4927334

    Article  CAS  Google Scholar 

  33. Gupta N, Sharma C, Kumar M, Kumar R (2017) Synthesis and comparative charge transfer studies in porphyrin–fullerene dyads: mode of attachment effect. New J Chem 41:13276–21328. https://doi.org/10.1039/C7NJ01613A

    Article  CAS  Google Scholar 

  34. Tessler N, Preezant Y, Rappaport N, Roichman Y (2009) Charge transport in disordered organic materials and its relevance to thin film device. Adv Mater 21:2741–2761. https://doi.org/10.1002/adma.200803541

    Article  CAS  Google Scholar 

  35. He T, Stolte M, Burschka C, Hansen NH, Musiol T, Kälblein D, Pflaum J, Tao X, Brill J, Würthne F (2015) Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat Commun 6:5954. https://doi.org/10.1038/ncomms6954

    Article  CAS  Google Scholar 

  36. Alvey PM, Reczek JJ, Lynch V, Iverson BL (2010) A systematic study of thermochromic aromatic donor–acceptor materials. J Org Chem 75:7682–7690. https://doi.org/10.1021/jo101498b

    Article  CAS  Google Scholar 

  37. Molla MR, Ghosh S (2012) Hydrogen-bonding-mediated J-aggregation and white-light emission from a remarkably simple, single component, naphthalenediimidechromophore. Chem Eur J 18:1290–1294. https://doi.org/10.1002/chem.201103600

    Article  CAS  Google Scholar 

  38. Milita S, Liscio F, Cowen L, Cavallini M, Drain BA, Degousee T, Luong S, Fenwick O, Guagliardi A, Schroeder BC, Masciocchi N (2020) Polymorphism in N, N′-dialkyl-naphthalene diimides. J Mater Chem C 8:3097–3112. https://doi.org/10.1039/C9TC06967D

    Article  CAS  Google Scholar 

  39. Basak S, Nandi N, Paul S, Banerjee A (2018) Luminescent naphthalene diimide-based peptide in aqueous medium and in solid state: rewritable fluorescent color code. ACS Omega 3:2174–2182. https://doi.org/10.1021/acsomega.7b01813

    Article  CAS  Google Scholar 

  40. Ichikawa M, Iwasaki K, Ohyama A, Miyazawa J, Yokota Y, Hirata N, Oguma N (2017) Comparative study of long alkyl chain substituted naphthalene diimide derivatives as n-type organic thin-film transistor materials. Jpn J Appl Phys 56:111601. https://doi.org/10.7567/JJAP.56.111601

    Article  Google Scholar 

  41. Yeh ML, Wang SY, Hardigree JFM, Podzorov V, Katz HE (2015) Effect of side chain length on film structure and electron mobility of core-unsubstitutedpyromelliticdiimides and enhanced mobility of the dibrominated core using the optimized side chain. J Mater Chem C 3:3029–3037. https://doi.org/10.1039/C4TC02611J

    Article  CAS  Google Scholar 

  42. Nan G, Shi Q, Shuai Z, Li Z (2011) Influences of molecular packing on the charge mobility of organic semiconductors: from quantum charge transfer rate theory beyond the first-order perturbation. Phys Chem Chem Phys 13:9736–9746. https://doi.org/10.1039/C1CP00001B

    Article  CAS  Google Scholar 

  43. Ma Z, Geng H, Wang D, Shuai Z (2016) Influence of alkyl side-chain length on the carrier mobility in organic semiconductors: herringbone versus pi–pi stacking. J Mater Chem C 4:4546–4555. https://doi.org/10.1039/C6TC00755D

    Article  CAS  Google Scholar 

  44. Blakesley JC, Schubert M, Steyrleuthner R, Chen Z, Facchetti A, Neher D (2011) Time-of-flight measurements and vertical transport in a high electron-mobility polymer. Appl Phys Lett 99:183310. https://doi.org/10.1063/1.3657827

    Article  CAS  Google Scholar 

  45. Kolhe NB, Devi RN, Senanayak SP, Jancy B, Narayan KS, Asha SK (2012) Structure engineering of naphthalene diimides for improved charge carrier mobility: Self-assembly by hydrogen bonding, good or bad? J Mater Chem 22:15235. https://doi.org/10.1039/c2jm32554c

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MA acknowledges UGC for junior research fellowship. SN thanks CSIR for research associate fellowship to carry out the research. RK acknowledges DST for funding through SERD program (DST/TMD/CERI).

Author information

Authors and Affiliations

Authors

Contributions

MA and NK made contributions towards investigation, formal analysis, validation and writing original draft. SN contributed for mobility measurements. Conceptualization, visualization, review and editing were contributed by RK.

Corresponding author

Correspondence to Rachana Kumar.

Ethics declarations

Conflict of interest

“Authors have no conflict to declare”.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6355 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahuja, M., Kumari, N., Naqvi, S. et al. Saturated and unsaturated aliphatic side chain-appended naphthalenediimide derivatives: synthesis and structure property relationship. J Mater Sci 56, 18327–18340 (2021). https://doi.org/10.1007/s10853-021-06502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06502-z

Navigation