Skip to main content
Log in

Efficient removal of U(VI) from solution using a MoS42− ion-exchange functionalized polypyrrole composite material

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

MoS4–Ppy was synthesized by a simple oxidative polymerization method and functionalized with the MoS42− ions. Because of the good stability and excellent ion-exchange properties, it has been considered as one of the promising candidates for metal ions adsorption. In this regard, the as-prepared MoS4–Ppy was used to remove U(VI) and well characterized by XRD, TEM, FT-IR, and XPS techniques. The batch adsorption experiments were systematically studied. It was found that the adsorption of U(VI) on MoS4–Ppy largely depends on the solution pH; the maximum adsorption capacity of MoS4–Ppy was determined to be 333.9 mg/g. Impressively, MoS4–Ppy showed excellent selectivity toward U(VI). The adsorption mechanism indicated that U(VI) mainly depends on the electrostatic interaction of MoS42− on the surface of MoS4–Ppy. And comprehensive experimental results show that MoS4–Ppy is highly stable under acid conditions, which can effectively remove radionuclides from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yuan Y, Feng S, Feng L, Yu Q, Liu T, Wang N (2020) A Bio-inspired nano-pocket spatial structure for targeting uranyl capture. Angew Chem Int Ed Engl 59:4262–4268. https://doi.org/10.1002/anie.201916450

    Article  CAS  Google Scholar 

  2. Zhu L, Sheng D, Xu C et al (2017) Identifying the recognition site for selective trapping of 99TcO4 in a hydrolytically stable and radiation resistant cationic metal-organic framework. J Am Chem Soc 139:14873–14876. https://doi.org/10.1021/jacs.7b08632

    Article  CAS  Google Scholar 

  3. Zou Y, Wang X, Khan A et al (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304. https://doi.org/10.1021/acs.est.6b01897

    Article  CAS  Google Scholar 

  4. Deng H, Li Z-j, Wang X-c et al (2019) Efficient photocatalytic reduction of aqueous perrhenate and pertechnetate. Environ Sci Technol 53:10917–10925. https://doi.org/10.1021/acs.est.9b03199

    Article  CAS  Google Scholar 

  5. Lu C, Zhang P, Jiang S et al (2017) Photocatalytic reduction elimination of UO22+ pollutant under visible light with metal-free sulfur doped g-C3N4 photocatalyst. Appl Catal, B 200:378–385. https://doi.org/10.1016/j.apcatb.2016.07.036

    Article  CAS  Google Scholar 

  6. Xiao C, Hassanzadeh Fard Z, Sarma D, Song TB, Xu C, Kanatzidis MG (2017) Highly efficient separation of trivalent minor actinides by a layered metal sulfide (KInSn2S6) from acidic radioactive waste. J Am Chem Soc 139:16494–16497. https://doi.org/10.1021/jacs.7b10464

    Article  CAS  Google Scholar 

  7. Min X, Yang WT, Hui YF, Gao CY, Dang S, Sun ZM (2017) Fe3O4@ ZIF-8: a magnetic nanocomposite for highly efficient UO22+ adsorption and selective UO22+/Ln3+ separation. Chem Commun 53:4199–4202. https://doi.org/10.1039/c6cc10274c

    Article  CAS  Google Scholar 

  8. Li Z, Chen F, Yuan L et al (2012) Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem Eng J 210:539–546. https://doi.org/10.1016/j.cej.2012.09.030

    Article  CAS  Google Scholar 

  9. Wazne M, Korfiatis GP, Meng XG (2003) Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ Sci Technol 37:3619–3624. https://doi.org/10.1021/es034166m

    Article  CAS  Google Scholar 

  10. Sheng D, Zhu L, Xu C et al (2017) Efficient and selective uptake of TcO4 by a cationic metal-organic framework material with open Ag+ sites. Environ Sci Technol 51:3471–3479. https://doi.org/10.1021/acs.est.7b00339

    Article  CAS  Google Scholar 

  11. Gu B, Liang L, Dickey MJ, Yin X, Dai S (1998) Reductive precipitation of uranium(VI) by zero-valent iron. Environ Sci Technol 32:3366–3373. https://doi.org/10.1021/es980010o

    Article  CAS  Google Scholar 

  12. Regenspurg S, Schild D, Schafer T, Huber F, Malmstrom ME (2009) Removal of uranium(VI) from the aqueous phase by iron(II) minerals in presence of bicarbonate. Appl Geochem 24:1617–1625. https://doi.org/10.1016/j.apgeochem.2009.04.029

    Article  CAS  Google Scholar 

  13. Ke L, Li P, Wu X et al (2017) Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible Light. Appl Catal, B 205:319–326. https://doi.org/10.1016/j.apcatb.2016.12.043

    Article  CAS  Google Scholar 

  14. Li Z-J, Huang Z-W, Guo W-L et al (2017) Enhanced photocatalytic removal of uranium(VI) from aqueous solution by magnetic TiO2/Fe3O4 and Its graphene composite. Environ Sci Technol 51:5666–5674. https://doi.org/10.1021/acs.est.6b05313

    Article  CAS  Google Scholar 

  15. Lu C, Chen R, Wu X et al (2016) Boron doped g-C3N4 with enhanced photocatalytic UO22+ reduction performance. Appl Surf Sci 360:1016–1022. https://doi.org/10.1016/j.apsusc.2015.11.112

    Article  CAS  Google Scholar 

  16. Zhang S, Xu W, Zeng M et al (2013) Superior adsorption capacity of hierarchical iron oxide@magnesium silicate magnetic nanorods for fast removal of organic pollutants from aqueous solution. J Mater Chem A 1:11691–11697. https://doi.org/10.1039/C3TA12767B

    Article  CAS  Google Scholar 

  17. Sun Y, Zhang R, Ding C et al (2016) Retracted: adsorption of U(VI) on sericite in the presence of Bacillus subtilis: a combined batch, EXAFS and modeling techniques. Geochim Cosmochim Acta 180:51–65. https://doi.org/10.1016/j.gca.2016.02.012

    Article  CAS  Google Scholar 

  18. Yang W, Bai Z-Q, Shi W-Q et al (2013) MOF-76: from a luminescent probe to highly efficient U(VI) sorption material. Chem Commun 49:10415–10417. https://doi.org/10.1039/C3CC44983A

    Article  CAS  Google Scholar 

  19. Zou Y, Wang X, Wu F et al (2017) Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustain Chem Eng 5:1173–1185. https://doi.org/10.1021/acssuschemeng.6b02550

    Article  CAS  Google Scholar 

  20. Lu Z, Neupane GP, Jia G et al (2020) 2D materials based on main group element compounds: phases, synthesis, characterization, and applications. Adv Funct Mater 30:2001127. https://doi.org/10.1002/adfm.202001127

    Article  CAS  Google Scholar 

  21. Zou L, Luo Y, Hooper M, Hu E (2006) Removal of VOCs by photocatalysis process using adsorption enhanced TiO2–SiO2 catalyst. Chem Eng Process 45:959–964. https://doi.org/10.1016/j.cep.2006.01.014

    Article  CAS  Google Scholar 

  22. Kütahyalı C, Eral M (2010) Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects. J Nucl Mater 396:251–256. https://doi.org/10.1016/j.jnucmat.2009.11.018

    Article  CAS  Google Scholar 

  23. Yu J, Luo X, Liu B et al (2018) Bayberry tannin immobilized bovine serum albumin nanospheres: characterization, irradiation stability and selective removal of uranyl ions from radioactive wastewater. J Mater Chem A 6:15359–15370. https://doi.org/10.1039/C8TA05000G

    Article  CAS  Google Scholar 

  24. Xu J, Cao Z, Zhang Y et al (2018) A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism. Chemosphere 195:351–364. https://doi.org/10.1016/j.chemosphere.2017.12.061

    Article  CAS  Google Scholar 

  25. Chen Z, Xing J, Pu Z et al (2018) Preparation of nano-Fe0 modified coal fly-ash composite and its application for U(VI) sequestration. J Mol Liq 266:824–833. https://doi.org/10.1016/j.molliq.2018.05.118

    Article  CAS  Google Scholar 

  26. Li J, Wang X, Zhao G et al (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47:2322–2356. https://doi.org/10.1039/C7CS00543A

    Article  CAS  Google Scholar 

  27. Saoudi B, Jammul N, Abel M-L, Chehimi MM, Dodin G (1997) DNA adsorption onto conducting polypyrrole. Synth Met 87:97–103. https://doi.org/10.1016/S0379-6779(96)03812-X

    Article  CAS  Google Scholar 

  28. Yang P, Liu Q, Liu J et al (2017) Interfacial growth of a metal-organic framework (UiO-66) on functionalized graphene oxide (GO) as a suitable seawater adsorbent for extraction of uranium(VI). J Mater Chem A 5:17933–17942. https://doi.org/10.1039/c6ta10022h

    Article  CAS  Google Scholar 

  29. Karthikeyan M, Satheeshkumar KK, Elango KP (2009) Removal of fluoride ions from aqueous solution by conducting polypyrrole. J Hazard Mater 167:300–305. https://doi.org/10.1016/j.jhazmat.2008.12.141

    Article  CAS  Google Scholar 

  30. Abdi S, Nasiri M, Mesbahi A, Khani MH (2017) Investigation of uranium (VI) adsorption by polypyrrole. J Hazard Mater 332:132–139. https://doi.org/10.1016/j.jhazmat.2017.01.013

    Article  CAS  Google Scholar 

  31. Choi M, Jang J (2008) Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon. J Colloid Interface Sci 325:287–289. https://doi.org/10.1016/j.jcis.2008.05.047

    Article  CAS  Google Scholar 

  32. Katal R, Hasani E, Farnam M, Baei MS, Ghayyem MA (2012) Charcoal ash as an adsorbent for Ni(II) adsorption and its application for wastewater treatment. J Chem Eng Data 57:374–383. https://doi.org/10.1021/je200953h

    Article  CAS  Google Scholar 

  33. Hosseini S, Ekramul Mahmud NHM, Binti Yahya R, Ibrahim F, Djordjevic I (2015) Polypyrrole conducting polymer and its application in removal of copper ions from aqueous solution. Mater Lett 149:77–80. https://doi.org/10.1016/j.matlet.2015.02.113

    Article  CAS  Google Scholar 

  34. Bose S, Kuila T, Uddin ME, Kim NH, Lau AKT, Lee JH (2010) In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites. Polymer 51:5921–5928. https://doi.org/10.1016/j.polymer.2010.10.014

    Article  CAS  Google Scholar 

  35. Chandra V, Kim KS (2011) Highly selective adsorption of Hg2+ by a polypyrrole–reduced graphene oxide composite. Chem Commun 47:3942–3944. https://doi.org/10.1039/C1CC00005E

    Article  CAS  Google Scholar 

  36. Bhaumik M, Setshedi K, Maity A, Onyango MS (2013) Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep Purif Technol 110:11–19. https://doi.org/10.1016/j.seppur.2013.02.037

    Article  CAS  Google Scholar 

  37. Sun Y, Li J, Wang X (2014) Retracted: the retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643. https://doi.org/10.1016/j.gca.2014.06.001

    Article  CAS  Google Scholar 

  38. Zhao G, Wen T, Yang X et al (2012) Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Trans 41:6182–6188. https://doi.org/10.1039/C2DT00054G

    Article  CAS  Google Scholar 

  39. Humelnicu D, Blegescu C, Ganju D (2014) Removal of uranium(VI) and thorium(IV) ions from aqueous solutions by functionalized silica: kinetic and thermodynamic studies. J Radioanal Nucl Chem 299:1183–1190. https://doi.org/10.1007/s10967-013-2873-4

    Article  CAS  Google Scholar 

  40. Collins YE, Stotzky G (1992) Heavy metals alter the electrokinetic properties of bacteria, yeasts, and clay minerals. Appl Environ Microbiol 58:1592

    Article  CAS  Google Scholar 

  41. Li X, Li F, Jin Y, Jiang C (2015) The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques. J Mol Liq 209:413–418. https://doi.org/10.1016/j.molliq.2015.06.014

    Article  CAS  Google Scholar 

  42. Shuibo X, Chun Z, Xinghuo Z, Jing Y, Xiaojian Z, Jingsong W (2009) Removal of uranium (VI) from aqueous solution by adsorption of hematite. J Environ Radioact 100:162–166. https://doi.org/10.1016/j.jenvrad.2008.09.008

    Article  CAS  Google Scholar 

  43. Lee HI, Kim JH, Kim JM et al (2010) Application of ordered nanoporous silica for removal of uranium ions from aqueous solutions. J Nanosci Nanotechnol 10:217–221. https://doi.org/10.1166/jnn.2010.1498

    Article  CAS  Google Scholar 

  44. Sprynskyy M, Kowalkowski T, Tutu H, Cukrowska EM, Buszewski B (2015) Ionic liquid modified diatomite as a new effective adsorbent for uranium ions removal from aqueous solution. Colloids Surf, A 465:159–167. https://doi.org/10.1016/j.colsurfa.2014.10.042

    Article  CAS  Google Scholar 

  45. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64:2431–2438. https://doi.org/10.1016/S0016-7037(00)00376-8

    Article  CAS  Google Scholar 

  46. Akyil S, Eral M (2005) Preparation of composite adsorbents and their characteristics. J Radioanal Nucl Chem 266:89–93. https://doi.org/10.1007/s10967-005-0874-7

    Article  CAS  Google Scholar 

  47. Donia AM, Atia AA, Moussa EMM, El-Sherif AM, Abd El-Magied MO (2009) Removal of uranium(VI) from aqueous solutions using glycidyl methacrylate chelating resins. Hydrometallurgy 95:183–189. https://doi.org/10.1016/j.hydromet.2008.05.037

    Article  CAS  Google Scholar 

  48. Xia L, Tan K, Wang X, Zheng W, Liu W, Deng C (2013) Uranium removal from aqueous solution by banyan leaves: equilibrium, thermodynamic, kinetic, and mechanism studies. J Environ Eng 139:887–895. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000695

    Article  CAS  Google Scholar 

  49. Vidya K, Gupta NM, Selvam P (2004) Influence of pH on the sorption behaviour of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves. Mater Res Bull 39:2035–2048. https://doi.org/10.1016/j.materresbull.2004.07.013

    Article  CAS  Google Scholar 

  50. Jung Y, Kim S, Park S-J, Kim JM (2008) Preparation of functionalized nanoporous carbons for uranium loading. Colloids Surf, A 313:292–295. https://doi.org/10.1016/j.colsurfa.2007.04.112

    Article  CAS  Google Scholar 

  51. Ladeira ACQ, Gonçalves CR (2007) Influence of anionic species on uranium separation from acid mine water using strong base resins. J Hazard Mater 148:499–504. https://doi.org/10.1016/j.jhazmat.2007.03.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (21976148, 21906133, 11905177, 22076155); the Basic Scientific Research Project of China (JCKY2018404C008); the National key research and development Project of China (2016YFC1402500); Sichuan Science and Technology Program (2020JDRC0068); the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (18zxhk04); the Long Shan Talent Project (18LZX304, 18LZXT04); and the Doctoral Foundation Project of Southwest University of Science and Technology (Grant No. 18zx7148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Zhu or Tao Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Chris Cornelius.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 304 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, B., Kou, Y., Pu, D. et al. Efficient removal of U(VI) from solution using a MoS42− ion-exchange functionalized polypyrrole composite material. J Mater Sci 56, 19528–19537 (2021). https://doi.org/10.1007/s10853-021-06466-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06466-0

Navigation