Skip to main content
Log in

U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

To improve the separation capacity of uranium in aqueous solutions, 3R-MoS2 nanosheets were prepared with molten salt electrolysis and further modified with polypyrrole (PPy) to synthesize a hybrid nanoadsorbent (PPy/3R-MoS2). The preparation conditions of PPy/3R-MoS2 were investigated and the obtained nanosheets were characterized with scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS). The results showed that PPy/3R-MoS2 exhibited enhanced adsorption capacity toward U(VI) compared to pure 3R-MoS2 and PPy; the maximum adsorption was 200.4 mg/g. The adsorption mechanism was elucidated with XPS and FTIR: (1) negatively charged PPy/3R-MoS2 nanosheets attracted UO 2+2 by an electrostatic interaction; (2) exposed C, N, Mo, and S atoms complexed with U(VI) through coordination; (3) Mo in the complex partly reduced the adsorbed U(VI) to U(IV), which further regenerated the adsorption point and continuously adsorbed U(VI). The design of the PPy/3R-MoS2 composite with a high adsorption capacity and chemical stability provides a new direction for the removal of radionuclide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.G. Gebreyohannes, V. del Rosario Alberto, A. Yimam, G. Woldetinsae, and B. Tadesse, Alternative beneficiation of tantalite and removal of radioactive oxides from Ethiopian Kenticha pegmatite-spodumene ores, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 727.

    Article  CAS  Google Scholar 

  2. Y. Liu, Z.P. Zhao, D.Z. Yuan, Y. Wang, Y. Dai, Y.A. Zhu, and J.W. Chew, Introduction of amino groups into polyphosphazene framework supported on CNT and coated Fe3O4 nanoparticles for enhanced selective U(VI) adsorption, Appl. Surf. Sci., 466(2019), p. 893.

    Article  CAS  Google Scholar 

  3. Z.B. Zhang, Z.M. Dong, X.X. Wang, Y. Dai, X.H. Cao, Y.Q. Wang, R. Hua, H.T. Feng, J.R. Chen, Y.H. Liu, B.W. Hu, and X.K. Wang, Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies, Chem. Eng. J., 370(2019), p. 1376.

    Article  CAS  Google Scholar 

  4. C. Jiang, Y. Liu, D.Z. Yuan, Y. Wang, J.B. Liu, and J.W. Chew, Investigation of the high U(VI) adsorption properties of phosphoric acid-functionalized heteroatoms-doped carbon materials, Solid State Sci., 104(2020), art. No. 106248.

  5. T.Q. Yin, L. Chen, Y. Xue, Y.H. Zheng, X.P. Wang, Y.D. Yan, M.L. Zhang, G.L. Wang, F. Gao, and M. Qiu, Electrochemical behavior and underpotential deposition of Sm on reactive electrodes (Al, Ni, Cu and Zn) in a LiCl−KCl melt, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1657.

    Article  CAS  Google Scholar 

  6. Rashad, G.M.M.R. Mahmoud, and M.A. Soliman, Combination of coprecipitation and foam separation processes for rapid recovery and preconcentration of cesium radionuclides from water systems, Process Saf. Environ. Prot., 130(2019), p. 163.

    Article  CAS  Google Scholar 

  7. W. Xiao, P. Zhou, X.H. Mao, and D.H. Wang, Ultrahigh aniline-removal capacity of hierarchically structured layered manganese oxides: Trapping aniline between interlayers, J. Mater. Chem. A, 3(2015), No. 16, p. 8676.

    Article  CAS  Google Scholar 

  8. L. Lei, D.L. Huang, G.M. Zeng, M. Cheng, D.N. Jiang, C.Y. Zhou, S. Chen, and W.J. Wang, A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties, Coord. Chem. Rev., 399(2019), art. No. 213020.

  9. Y. Kou, L. Zhang, B. Liu, L. Zhu, and T. Duan, Phosphonate modified MoS2 composite material for effective adsorption of uranium(VI) in aqueous solution, J. Radioanal. Nucl. Chem., 323(2020), No. 1, p. 641.

    Article  CAS  Google Scholar 

  10. M.A. Macchione, R. Mendoza-Cruz, L. Bazán-Diaz, J.J. Velázquez-Salazar, U. Santiago, M.J. Arellano-Jiménez, J.F. Perez, M. José-Yacamán, and J.E. Samaniego-Benitez, Electron microscopy study of the carbon-induced 2H-3R-1T phase transition of MoS2, New J. Chem., 44(2020), No. 4, p. 1190.

    Article  CAS  Google Scholar 

  11. J.M. Luo, K.X. Fu, M. Sun, K. Yin, D. Wang, X. Liu, and J.C. Crittenden, Phase-mediated heavy metal adsorption from aqueous solutions using two-dimensional layered MoS2, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38789.

    Article  CAS  Google Scholar 

  12. Y.X. Yao, K.L. Ao, P. Lv, and Q.F. Wei, MoS2 coexisting in 1T and 2H phases synthesized by common hydrothermal method for hydrogen evolution reaction, Nanomaterials, 9(2019), No. 6, art. No. 844.

  13. S. Dhar, V. Kranthi Kumar, T.H. Choudhury, S.A. Shivashankar, and S. Raghavan, Chemical vapor deposition of MoS2 layers from Mo−S−C−O−H system: Thermodynamic modeling and validation, Phys. Chem. Chem. Phys., 18(2016), No. 22, p. 14918.

    Article  CAS  Google Scholar 

  14. Y.X. Zhang, S.X. Wang, H.H. Yu, H.J. Zhang, Y.X. Chen, L.M. Mei, A. Di Lieto, M. Tonelli, and J.Y. Wang, Atomic-layer molybdenum sulfide optical modulator for visible coherent light, Sci. Rep., 5(2015), art. No. 11342.

  15. A. Dash, R. Vaßen, O. Guillon, and J. Gonzalez-Julian, Molten salt shielded synthesis of oxidation prone materials in air, Nat. Mater., 18(2019), No. 5, p. 465.

    Article  CAS  Google Scholar 

  16. W. Weng, J.R. Yang, J. Zhou, D. Gu, and W. Xiao, Template-free electrochemical formation of silicon nanotubes from silica, Adv. Sci., 7(2020), No. 17, art. No. 2001492.

  17. D. Pang, W. Weng, J. Zhou, D. Gu, and W. Xiao, Controllable conversion of rice husks to Si/C and SiC/C composites in molten salts, J. Energy Chem., 55(2021), p. 102.

    Article  Google Scholar 

  18. W. Weng, S.B. Wang, W. Xiao, and X.W. Lou, Direct conversion of rice husks to nanostructured SiC/C for CO2 photoreduction, Adv. Mater., 32(2020), No. 29, art. No. 2001560.

  19. W. Weng, L.Z. Tang, and W. Xiao, Capture and electro-splitting of CO2 in molten salts, J. Energy Chem., 28(2019), p. 128.

    Article  Google Scholar 

  20. E. Ahmadi, R.O. Suzuki, T. Kikuchi, T. Kaneko, and Y. Yashima, Towards a sustainable technology for production of extrapure Ti metal: Electrolysis of sulfurized Ti(C,N) in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1635.

    Article  CAS  Google Scholar 

  21. Y.P. Dou, D.Y. Tang, H.Y. Yin, and D.H. Wang, Electrochemical preparation of the Fe-Ni36 Invar alloy from a mixed oxides precursor in molten carbonates, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1695.

    Article  CAS  Google Scholar 

  22. D.H. Tian, Z.C. Han, M.Y. Wang, and S.Q. Jiao, Direct electrochemical N-doping to carbon paper in molten LiCl−KCl−Li3N, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1687.

    Article  CAS  Google Scholar 

  23. H.J. Luo, Y. Xue, Y.H. Zheng, Y.D. Yan, F.Q. Ma, M.L. Zhang, T.Q. Yin, F. Gao, and M. Qiu, Controllable preparation of carbon materials with different morphologies assisted by molten salt electrolysis, ECS J. Solid State Sci. Technol., 8(2019), No. 12, p. M122.

    Article  CAS  Google Scholar 

  24. R. Jiang, L. Pi, B.W. Deng, L.Y. Hu, X.L. Liu, J.X. Cui, X.H. Mao, and D.H. Wang, Electric field-driven interfacial alloying for in situ fabrication of nano-Mo2C on carbon fabric as cathode toward efficient hydrogen generation, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38606.

    Article  CAS  Google Scholar 

  25. Y.H. Liu, X.Y. Jing, M.L. Zhang, Y.D. Yan, D.B. Ji, P. Li, H.B. Xu, and Y. Xue, Electrochemical synthesis and tribological properties of flower-like and sheet-like MoS2 in LiCl−KCl−(NH4)6Mo7O24−KSCN melt, Electrochimica Acta, 271(2018), p. 252.

    Article  CAS  Google Scholar 

  26. Y.H. Liu, C. Fang, S. Zhang, W.H. Zhong, Q.L. Wei, Y.C. Wang, Y. Dai, Y.Q. Wang, Z.B. Zhang, and Y.H. Liu, Effective adsorption of uranyl ions with different MoS2-exposed surfaces in aqueous solution, Surf. Interfaces, 18(2020), art. No. 100409.

  27. M. Bhaumik, A. Maity, V.V. Srinivasu, and M.S. Onyango, Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite, J. Hazard. Mater., 190(2011), No. 1–3, p. 381.

    Article  CAS  Google Scholar 

  28. Y.L. Xu, J.Y. Chen, R. Chen, P.L. Yu, S. Guo, and X.F. Wang, Adsorption and reduction of chromium(VI) from aqueous solution using polypyrrole/calcium rectorite composite adsorbent, Water Res., 160(2019), p. 148.

    Article  CAS  Google Scholar 

  29. C.N. Zhong, S.Z. Su, L. Xu, Q. Liu, H.S. Zhang, P.P. Yang, M.L. Zhang, X.F. Bai, and J. Wang, Preparation of NiAl-LDH/Polypyrrole composites for uranium(VI) extraction from simulated seawater, Colloids Surf. A, 562(2019), p. 329.

    Article  CAS  Google Scholar 

  30. X. Lu, Y.W. Lin, H.F. Dong, W.H. Dai, X. Chen, X.H. Qu, and X.J. Zhang, One-step hydrothermal fabrication of three-dimensional MoS2 nanoflower using polypyrrole as template for efficient hydrogen evolution reaction, Sci. Rep., 7(2017), art. No. 42309.

  31. K. Chang, X. Hai, H. Pang, H.B. Zhang, L. Shi, G.G. Liu, H.M. Liu, G.X. Zhao, M. Li, and J.H. Ye, Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution, Adv. Mater., 28(2016), No. 45, p. 10033.

    Article  CAS  Google Scholar 

  32. C.F. Zhong, W. Weng, X.X. Liang, D. Gu, and W. Xiao, One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation, Appl. Surf. Sci., 507(2020), art. No. 145072.

  33. J. van Baren, G.H. Ye, J.A. Yan, Z.P. Ye, P. Rezaie, P. Yu, Z. Liu, R. He, and C.H. Lui, Stacking-dependent interlayer phonons in 3R and 2H MoS2, 2D Mater., 6(2019), No. 2, art. No. 025022.

  34. P. Manivasagan, N. Quang Bui, S. Bharathiraja, M. Santha Moorthy, Y.O. Oh, K. Song, H. Seo, M. Yoon, and J. Oh, Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer, Sci. Rep., 7(2017), p. 43593.

    Article  Google Scholar 

  35. X.C. Li, G.L. Jiang, G.H. He, W.J. Zheng, Y. Tan, and W. Xiao, Preparation of porous PPy−TiO2 composites: Improved visible light photoactivity and the mechanism, Chem. Eng. J., 236(2014), p. 480.

    Article  CAS  Google Scholar 

  36. S. Veli, A. Arslan, Ç. Gülümser, E. Topkaya, H. Kurtkulak, Ş. Zeybek, A. Dimoglo, and M. İşgören, Advanced treatment of pre-treated commercial laundry wastewater by adsorption process: Experimental design and cost evaluation, J. Ecol. Eng., 20(2019), No. 10, p. 165.

    Article  Google Scholar 

  37. D. Tan, M. Willatzen, and Z.L. Wang, Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures, Nano Energy, 56(2019), p. 512.

    Article  Google Scholar 

  38. D. Xie, D.H. Wang, W.J. Tang, X.H. Xia, Y.J. Zhang, X.L. Wang, C.D. Gu, and J.P. Tu, Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage, J. Power Sources, 307(2016), p. 510.

    Article  CAS  Google Scholar 

  39. M.A. Salem, R.G. Elsharkawy, and M.F. Hablas, Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies, Eur. Polym. J., 75(2016), p. 577.

    Article  CAS  Google Scholar 

  40. E. Fourest and J.C. Roux, Heavy metal biosorption by fungal mycelial by-products: Mechanisms and influence of pH, Appl. Microbiol. Biotechnol., 37(1992), No. 3, p. 399.

    Article  CAS  Google Scholar 

  41. W.P. Li, X.Y. Han, X.Y. Wang, Y.Q. Wang, W.X. Wang, H. Xu, T.S. Tan, W.S. Wu, and H.X. Zhang, Recovery of uranyl from aqueous solutions using amidoximated polyacrylonitrile/exfoliated Na-montmorillonite composite, Chem. Eng. J., 279(2015), p. 735.

    Article  CAS  Google Scholar 

  42. S. Sadeghi, H. Azhdari, H. Arabi, and A.Z. Moghaddam, Surface modified magnetic Fe3O4 nanoparticles as a selective sorbent for solid phase extraction of uranyl ions from water samples, J. Hazard. Mater., 215–216(2012), p. 208.

    Article  Google Scholar 

  43. D.S. Karpovich and G.J. Blanchard, Direct measurement of the adsorption kinetics of alkanethiolate self-assembled monolayers on a microcrystalline gold surface, Langmuir, 10(1994), No. 9, p. 3315.

    Article  CAS  Google Scholar 

  44. S. Deng, C.X. Yu, J.F. Niu, J.B. Liao, and X.H. Liu, Microwave assisted synthesis of phosphorylated PAN fiber for highly efficient and enhanced extraction of U(VI) ions from water, Chem. Eng. J., 392(2020), art. No. 123815.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21906019, 21906018, 21561002, 21866004, and 21866003), the Science & Technology Support Program of Jiangxi Province, China (No. 2018ACB21007), the Jiangxi Program of Academic and Technical Leaders of Major Disciplines, China (No. 20182BCB22011), the Project of the Jiangxi Provincial Department of Education, China (Nos. GJJ160550, GJJ180385, and GJJ180400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhui Liu or Yunhai Liu.

Additional information

Conflict of Interest

The authors declare no potential conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tang, M., Zhang, S. et al. U(VI) adsorption behavior onto polypyrrole coated 3R-MoS2 nanosheets prepared with the molten salt electrolysis method. Int J Miner Metall Mater 29, 479–489 (2022). https://doi.org/10.1007/s12613-020-2154-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2154-5

Keywords

Navigation