Skip to main content
Log in

A review on emerging biodegradable polymers for environmentally benign transient electronic skins

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Biodegradable or transient electronics is an emerging technology whose key characteristic is an ability to dissolve, resorb, physically disappear or disintegrate in physiological environments after fulfilling their functions over prescribed time frames. Biodegradable electronics as temporary implants can be safely absorbed by the body, and as green electronics can effectively alleviate landfill and environmental issues caused by electronic wastes, which are expected to ultimately eliminate associated costs and risks resulting from recycling operations. In this review, the state of the art of the biodegradable polymers, their fabrication techniques, and potential applications in environment friendly electronic skins (e-skins) are comprehensively summarized and systematically discussed. In addition, the future outlook for the development of biodegradable e-skins is also discussed at the end. It is expected that this review will potentially provide vital tools and beneficial strategies for the design of biodegradable e-skins with the functions of diagnosis, therapy and green sensing that are beneficial for human healthcare and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Irimia-Vladu M, Głowacki ED, Voss G, Bauer S, Sariciftci NS (2012) Greenand biodegradable electronics. Mater Today 15(7–8):340–346

    CAS  Google Scholar 

  2. Irimia-Vladu M (2014) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43(2):588–610

    CAS  Google Scholar 

  3. Hwang S-W, Tao H, Kim D-H, Cheng H, Song J-K, Rill E, Brenckle MA, Panilaitis B, Won SM, Kim Y-SJS (2012) A physically transient form of silicon electronics. Science 337(6102):1640–1644

    CAS  Google Scholar 

  4. Hwang SW, Song JK, Huang X, Cheng H, Kang SK, Kim BH, Kim JH, Yu S, Huang Y, Rogers JA (2014) High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater 26(23):3905–3911

    CAS  Google Scholar 

  5. Kang S-K, Hwang S-W, Yu S, Seo J-H, Corbin EA, Shin J, Wie DS, Bashir R, Ma Z, Rogers JA (2015) Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv Funct Mater 25(12):1789–1797

    CAS  Google Scholar 

  6. Fu KK, Wang Z, Dai J, Carter M, Hu L (2016) Transient electronics: materials and devices. Chem Mat 28(11):3527–3539

    CAS  Google Scholar 

  7. Lee G, Kang S-K, Won SM, Gutruf P, Jeong YR, Koo J, Lee S-S, Rogers JA, Ha JS (2017) Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv Energy Mater 7(18):1700157

    Google Scholar 

  8. Ji X, Song L, Zhong S, Jiang Y, Lim KG, Wang C, Zhao R (2018) Biodegradable and flexible resistive memory for transient electronics. J Phys Chem C 122(29):16909–16915

    CAS  Google Scholar 

  9. Li R, Wang L, Kong D, Yin L (2018) Recent progress on biodegradable materials and transient electronics. Bioact Mater 3(3):322–333

    Google Scholar 

  10. Xu J, Zhao X, Wang Z, Xu H, Hu J, Ma J, Liu Y (2019) Biodegradable natural pectin-based flexible multilevel resistive switching memory for transient electronics. Small 15(4):1803970

    Google Scholar 

  11. Han WB, Lee JH, Shin JW, Hwang SW (2020) Advanced materials and systems for biodegradable, transient electronics. Adv Mater 32(51):2002211

    CAS  Google Scholar 

  12. Liu K, Tran H, Feig VR, Bao Z (2020) Biodegradable and stretchable polymeric materials for transient electronic devices. MRS Bull 45(2):96–102

    Google Scholar 

  13. Boutry CM, Nguyen A, Lawal QO, Chortos A, Rondeau-Gagne S, Bao Z (2015) A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv Mater 27(43):6954–6961

    CAS  Google Scholar 

  14. Hwang SW, Lee CH, Cheng H, Jeong JW, Kang SK, Kim JH, Shin J, Yang J, Liu Z, Ameer GA, Huang Y, Rogers JA (2015) Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett 15(5):2801–2808

    CAS  Google Scholar 

  15. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798

    CAS  Google Scholar 

  16. Lee HS, Park SH, Lee JH, Jeong BY, Ahn SK, Choi YM, Choi DJ, Chang JH (2013) Antimicrobial and biodegradable PLGA medical sutures with natural grapefruit seed extracts. Mater Lett 95:40–43

    CAS  Google Scholar 

  17. Pillai CKS, Sharma CP (2010) Absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance. J Biomater App 25(4):291–366

    CAS  Google Scholar 

  18. Shishatskaya E, Volova T, Puzyr A, Mogilnaya O, Efremov SN (2004) Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci Mater Med 15(6):719–728

    CAS  Google Scholar 

  19. Cutright DE, Hunsuck EEJOS (1971) Tissue reaction to the biodegradable polylactic acid suture. Oral Surg Oral Med Oral Pathol Oral Radiol 31(1):134–139

    CAS  Google Scholar 

  20. Felgueiras HP, Tavares TD, Amorim MTP (2019) Biodegradable, spun nanocomposite polymeric fibrous dressings loaded with bioactive biomolecules for an effective wound healing: A review. Mater Sci Eng. 634(1):012033

    CAS  Google Scholar 

  21. Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56(2):145–157

    CAS  Google Scholar 

  22. Kwon GS, Furgeson DY (2007) Biodegradable polymers for drug delivery systems. Woodhead Publishing, Sawston, pp 83–110

    Google Scholar 

  23. Joshi J, Patel R (2012) Role of biodegradable polymers in drug delivery. Int J Curr Pharm Res 4(4):74–81

    CAS  Google Scholar 

  24. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    CAS  Google Scholar 

  25. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21(3):117–132

    CAS  Google Scholar 

  26. Hammock ML, Chortos A, Tee BC, Tok JB, Bao Z (2013) 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 25(42):5997–6038

    CAS  Google Scholar 

  27. Oh JY, Bao Z (2019) Second skin enabled by advanced electronics. Adv Sci 6(11):1900186

    Google Scholar 

  28. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S (2019) Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 31(48):e1904765

    Google Scholar 

  29. Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL (2015) Recent progress in electronic skin. Adv Sci 2(10):1500169

    Google Scholar 

  30. Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R (2014) 25th anniversary article: A soft future: from robots and sensor skin to energy harvesters. Adv Mater 26(1):149–161

    CAS  Google Scholar 

  31. Chen S, Xie J, Liu J, Huang X, Wang C (2020) Transparent, highly-stretchable, adhesive, and ionic conductive composite hydrogel for biomimetic skin. J Mater Sci 56(3):2725–2737. https://doi.org/10.1007/s10853-020-05382-z

    Article  CAS  Google Scholar 

  32. Wang S, Oh JY, Xu J, Tran H, Bao Z (2018) Skin-inspired electronics: an emerging paradigm. Acc Chem Res 51(5):1033–1045

    CAS  Google Scholar 

  33. Boutry CM, Kaizawa Y, Schroeder BC, Chortos A, Legrand A, Wang Z, Chang J, Fox P, Bao Z (2018) A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat Electron 1(5):314–321

    Google Scholar 

  34. Boutry CM, Beker L, Kaizawa Y, Vassos C, Tran H, Hinckley AC, Pfattner R, Niu S, Li J, Claverie J, Wang Z, Chang J, Fox PM, Bao Z (2019) Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat Biomed Eng 3(1):47–57

    CAS  Google Scholar 

  35. Peng X, Dong K, Ye C, Jiang Y, Zhai S, Cheng R, Liu D, Gao X, Wang J, Wang ZL (2020) A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci Adv 6(26):eaba9624

    CAS  Google Scholar 

  36. Hou C, Xu Z, Qiu W, Wu R, Wang Y, Xu Q, Liu XY, Guo W (2019) A biodegradable and stretchable protein-based sensor as artificial electronic skin for human motion detection. Small 15(11):1805084

    Google Scholar 

  37. Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci 24(5):414–422

    CAS  Google Scholar 

  38. Alizadeh-Osgouei M, Li Y, Wen C (2019) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 4(1):22–36

    Google Scholar 

  39. Azevedo HS, Reis RL (2005) Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. https://doi.org/10.1201/9780203491232.ch12

  40. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2(2):307–344

    CAS  Google Scholar 

  41. Jung YH, Chang TH, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park DW, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170

    Google Scholar 

  42. Gao X, Huang L, Wang B, Xu D, Zhong J, Hu Z, Zhang L, Zhou J (2016) Natural materials assembled, biodegradable, and transparent paper-based electret nanogenerator. ACS Appl Mater Interfaces 8(51):35587–35592

    CAS  Google Scholar 

  43. Zhu M, Jia C, Wang Y, Fang Z, Dai J, Xu L, Huang D, Wu J, Li Y, Song J, Yao Y, Hitz E, Wang Y, Hu L (2018) Isotropic paper directly from anisotropic wood: top-down green transparent substrate toward biodegradable electronics. ACS Appl Mater Interfaces 10(34):28566–28571

    CAS  Google Scholar 

  44. Nyamayaro K, Keyvani P, D’Acierno F, Poisson J, Hudson ZM, Michal CA, Madden JDW, Hatzikiriakos SG, Mehrkhodavandi P (2020) Toward biodegradable electronics: ionic diodes based on a cellulose nanocrystal-agarose hydrogel. ACS Appl Mater Interfaces 12(46):52182–52191

    CAS  Google Scholar 

  45. Hsieh Y-L (2013) Cellulose nanocrystals and self-assembled nanostructures from cotton, rice straw and grape skin: a source perspective. J Mater Sci 48(22):7837–7846. https://doi.org/10.1007/s10853-013-7512-5

    Article  CAS  Google Scholar 

  46. Yu X, Chen L, Jin Z, Jiao A (2021) Research progress of starch-based biodegradable materials: a review. J Mater Sci 2021: 1–22. https://doi.org/10.1007/s10853-021-06063-1

  47. Jo M, Min K, Roy B, Kim S, Lee S, Park JY, Kim S (2018) Protein-based electronic skin akin to biological tissues. ACS Nano 12(6):5637–5645

    CAS  Google Scholar 

  48. Kumar R, Ranwa S, Kumar G (2020) Biodegradable flexible substrate based on chitosan/pvp blend polymer for disposable electronics device applications. J Phys Chem B 124(1):149–155

    CAS  Google Scholar 

  49. Yu K, Lan G, Lu B, Liu J, Chen J, Dai F, Wu D (2017) Evaluation of artificial skin made from silkworm cocoons. J Mater Sci 52(9):5435–5448. https://doi.org/10.1007/s10853-017-0788-0.pdf

    Article  CAS  Google Scholar 

  50. Li W, Liu Q, Zhang Y, Li C, He Z, Choy WCH, Low PJ, Sonar P, Kyaw AKK (2020) Biodegradable materials and green processing for green electronics. Adv Mater 32(33):2001591

    CAS  Google Scholar 

  51. Borysiuk P, Boruszewski P, Auriga R, Danecki L, Auriga A, Rybak K, Nowacka M (2021) Influence of a bark-filler on the properties of PLA biocomposites. J Mater Sci 56(15):9196–9208. https://doi.org/10.1007/s10853-021-05901-6

    Article  CAS  Google Scholar 

  52. Zhao X-Y, Xie J, Wang M-Z, Xing A (2012) Synthesis and characterization of novel biodegradable tetra-amino-terminated PLGA telechelic copolymer. J Mater Sci 48(2):659–664. https://doi.org/10.1007/s10853-012-6771-x

    Article  CAS  Google Scholar 

  53. Zhijiang C, Zhihong W (2007) Preparation of biodegradable poly(3-hydroxybutyrate) (PHB) and poly(ethylene glycol) (PEG) graft copolymer. J Mater Sci Science 42(14):5886–5890

    Google Scholar 

  54. Guo B, Glavas L, Albertsson A-C (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38(9):1263–1286

    CAS  Google Scholar 

  55. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353

    CAS  Google Scholar 

  56. Shi G, Rouabhia M, Wang Z, Dao LH, Zhang Z (2004) A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials 25(13):2477–2488

    CAS  Google Scholar 

  57. Wang S, Guan S, Wang J, Liu H, Liu T, Ma X, Cui Z (2017) Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application. J Biosci Bioeng 123(1):116–125

    CAS  Google Scholar 

  58. Zhao Y, Zhao X, Zang Y, Di C-A, Diao Y, Mei J (2015) Conjugation-break spacers in semiconducting polymers: impact on polymer processability and charge transport properties. Macromolecules 48(7):2048–2053

    CAS  Google Scholar 

  59. Oh JY, Rondeau-Gagne S, Chiu YC, Chortos A, Lissel F, Wang GN, Schroeder BC, Kurosawa T, Lopez J, Katsumata T, Xu J, Zhu C, Gu X, Bae WG, Kim Y, Jin L, Chung JW, Tok JB, Bao Z (2016) Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539(7629):411–415

    CAS  Google Scholar 

  60. Li L, Ge J, Guo B, Ma PX (2014) In situ forming biodegradable electroactive hydrogels. Polym Chem 5(8):2880–2890

    CAS  Google Scholar 

  61. Feig VR, Tran H, Bao Z (2018) Biodegradable polymeric materials in degradable electronic devices. ACS Cent Sci 4(3):337–348

    CAS  Google Scholar 

  62. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265

    CAS  Google Scholar 

  63. Alexander M (1999) Biodegradation and bioremediation. Gulf Professional Publishing, Houston

    Google Scholar 

  64. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo JE (2008) Polymer biodegradation: mechanisms and estimation techniques. Chemosphere 73(4):429–442

    CAS  Google Scholar 

  65. Gu J-D (2003) Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeterior & Biodegrad 52(2):69–91

    CAS  Google Scholar 

  66. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44(21):5713–5724. https://doi.org/10.1007/s10853-009-3770-7

    Article  CAS  Google Scholar 

  67. Nath DCD, Bandyopadhyay S, Boughton P, Yu A, Blackburn D, White C (2010) Chemically modified fly ash for fabricating super-strong biodegradable poly(vinyl alcohol) composite films. J Mater Sci 45(10):2625–2632. https://doi.org/10.1007/s10853-010-4240-y

    Article  CAS  Google Scholar 

  68. Sisson K, Zhang C, Farach-Carson MC, Chase DB, Rabolt JF (2010) Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. J Biomed Mater Res A 94(4):1312–1320

    Google Scholar 

  69. Clark RAF (2001) Fibrin and wound healing[J]. Ann Ny Acad Sci 936(1):355–367

    CAS  Google Scholar 

  70. Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792

    CAS  Google Scholar 

  71. Serrano MC, Pagani R, Vallet-Regi M, Pena J, Ramila A, Izquierdo I, Portoles MT (2004) In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts. Biomaterials 25(25):5603–5611

    CAS  Google Scholar 

  72. Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28(1):5–24

    CAS  Google Scholar 

  73. Rai R, Tallawi M, Barbani N, Frati C, Madeddu D, Cavalli S, Graiani G, Quaini F, Roether JA, Schubert DW, Rosellini E, Boccaccini AR (2013) Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application. Mater Sci Eng C Mater Biol Appl 33(7):3677–3687

    CAS  Google Scholar 

  74. Cao Y, Uhrich KE (2018) Biodegradable and biocompatible polymers for electronic applications: a review. J Bioact Compat Polym 34(1):3–15

    Google Scholar 

  75. Eslamian M, Zabihi F (2015) Ultrasonic substrate vibration-assisted drop casting (SVADC) for the fabrication of photovoltaic solar cell arrays and thin-film devices. Nanoscale Res Lett 10(1):462

    Google Scholar 

  76. Esteves ACC, Luo Y, van de Put MWP, Carcouët CCM, de With G (2014) Self-replenishing dual structured superhydrophobic coatings prepared by drop-casting of an all-in-one dispersion. Adv Funct Mater 24(7):986–992

    CAS  Google Scholar 

  77. Ito F, Yamamoto K, Kogasaka Y, Katoh R (2018) Intermolecular dynamics of perylene in polymer matrices during the drop-casting process probed by fluorescence and droplet mass changes. Langmuir 34(28):8281–8287

    CAS  Google Scholar 

  78. Lee BH, Park SH, Back H, Lee K (2011) Novel film-casting method for high-performance flexible polymer electrodes. Adv Funct Mater 21(3):487–493

    CAS  Google Scholar 

  79. Park J, Lee S, Lee HH (2006) High-mobility polymer thin-film transistors fabricated by solvent-assisted drop-casting. Org Electron 7(5):256–260

    CAS  Google Scholar 

  80. Zhao C, Xing L, Xiang J, Cui L, Jiao J, Sai H, Li Z, Li F (2014) Formation of uniform reduced graphene oxide films on modified PET substrates using drop-casting method. Particuology 17:66–73

    CAS  Google Scholar 

  81. Chang C-C, Pai C-L, Chen W-C, Jenekhe SA (2005) Spin coating of conjugated polymers for electronic and optoelectronic applications. Thin Solid Films 479(1–2):254–260

    CAS  Google Scholar 

  82. Flack WW, Soong DS, Bell AT, Hess DW (1984) A mathematical model for spin coating of polymer resists. J Appl Phys 56(4):1199–1206

    CAS  Google Scholar 

  83. Lawrence CJ (1988) The mechanics of spin coating of polymer films. Phys Fluids 31(10):2786–2795

    CAS  Google Scholar 

  84. Xu L, Yamamoto A (2012) Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf B Biointerfaces 93:67–74

    CAS  Google Scholar 

  85. Kelso MV, Mahenderkar NK, Chen Q, Tubbesing JZ, Switzer JA (2019) Spin coating epitaxial films. Science 364(6436):166–169

    CAS  Google Scholar 

  86. Extrand CW (1994) Spin coating of very thin polymer films. Polym Eng Sci 34(5):390–394

    CAS  Google Scholar 

  87. Danglad-Flores J, Eickelmann S, Riegler H (2018) Deposition of polymer films by spin casting: a quantitative analysis. Chem Eng Sci 179:257–264

    CAS  Google Scholar 

  88. Shojaeiarani J, Bajwa DS, Stark NM (2018) Spin-coating: A new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly (lactic acid) composites. Carbohydr Polym 190:139–147

    CAS  Google Scholar 

  89. Ding T, Zhao Q, Smoukov SK, Baumberg JJ (2014) Selectively patterning polymer opal films via microimprint lithography. Adv Opt Mater 2(11):1098–1104

    CAS  Google Scholar 

  90. Takei S, Nakajima S, Sugahara K, Hanabata M, Matsumoto Y, Sekiguchi A (2016) Gas-permeable cellulose template for reduction of template damage and gas trapping in microimprint lithography of high volume manufacturing. Macromol Mater Eng 301(8):902–906

    CAS  Google Scholar 

  91. Qin D, Xia Y, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502

    CAS  Google Scholar 

  92. Paun IA, Zamfirescu M, Mihailescu M, Luculescu CR, Mustaciosu CC, Dorobantu I, Calenic B, Dinescu M (2014) Laser micro-patterning of biodegradable polymer blends for tissue engineering. J Mater Sci 50(2):923–936. https://doi.org/10.1007/s10853-014-8652-y

    Article  CAS  Google Scholar 

  93. Lu Y, Chen SC (2004) Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev 56(11):1621–1633

    CAS  Google Scholar 

  94. Chang JK, Chang HP, Guo Q, Koo J, Wu CI, Rogers JA (2018) Biodegradable electronic systems in 3D, heterogeneously integrated formats. Adv Mater 30(11):1870077

    Google Scholar 

  95. Pan R, Xuan W, Chen J, Dong S, Jin H, Wang X, Li H, Luo J (2018) Fully biodegradable triboelectric nanogenerators based on electrospun polylactic acid and nanostructured gelatin films. Nano Energy 45:193–202

    CAS  Google Scholar 

  96. Zhang C-L, Yu S-HJ (2016) Spraying functional fibres by electrospinning. Mater Horizons 3(4):266–269

    CAS  Google Scholar 

  97. Chen S, Hao Y, Cui W, Chang J, Zhou Y (2013) Biodegradable electrospun PLLA/chitosan membrane as guided tissue regeneration membrane for treating periodontitis. J Mater Sci 48(19):6567–6577. https://doi.org/10.1007/s10853-013-7453-z

    Article  CAS  Google Scholar 

  98. Liu M, Hao X, Wang Y, Jiang Z, Zhang H (2020) A biodegradable core-sheath nanofibrous 3D hierarchy prepared by emulsion electrospinning for sustained drug release. J Mater Sci 55(35):16730–16743. https://doi.org/10.1007/s10853-020-05205-1

    Article  CAS  Google Scholar 

  99. Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML (2021) Fabrication of biomedical scaffolds using biodegradable polymers. Chem Rev. https://doi.org/10.1021/acs.chemrev.0c01200

    Article  Google Scholar 

  100. Park J, Kim J-K, Park SA, Lee D-W (2019) Biodegradable polymer material based smart stent: Wireless pressure sensor and 3D printed stent. Microelectron Eng 206:1–5

    CAS  Google Scholar 

  101. Kazemzadeh Farizhandi AA, Khalajabadi SZ, Krishnadoss V, Noshadi I (2020) Synthesized biocompatible and conductive ink for 3D printing of flexible electronics. J Mech Behav Biomed Mater 110:103960

    CAS  Google Scholar 

  102. Liu C, Huang N, Xu F, Tong J, Chen Z, Gui X, Fu Y, Lao C (2018) 3D printing technologies for flexible tactile sensors toward wearable electronics and electronic skin. Polymers 10(6):629

    Google Scholar 

  103. You X, Yang J, Dong S (2021) Structural and functional applications of 3D-printed graphene-based architectures. J Mater Sci 56(15):9007–9046. https://doi.org/10.1007/s10853-021-05899-x

    Article  CAS  Google Scholar 

  104. Wu L, Jing D, Ding J (2006) A “room-temperature” injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds. Biomaterials 27(2):185–191

    CAS  Google Scholar 

  105. Yang K, Du J, Zhang Z, Liu D, Ren T (2020) Facile and eco-friendly preparation of super-amphiphilic porous polycaprolactone. J Colloid Interface Sci 560:795–801

    CAS  Google Scholar 

  106. Akbarzadeh R, Yousefi AM (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(6):1304–1315

    Google Scholar 

  107. Chortos A, Liu J, Bao Z (2016) Pursuing prosthetic electronic skin. Nat Mater 15(9):937–950

    CAS  Google Scholar 

  108. Baxter L (1996) Capacitive sensors: design and applications. Power electronic converter harmonics: multipulse methods for clean power. IEEE Press, Hoboken

    Google Scholar 

  109. Deangelis, A. R.; Wilson, D. B.; Mazzeo, B. A., Flexible capacitive sensor. Google Patents: 2008.

  110. Luo N, Dai W, Li C, Zhou Z, Lu L, Poon CC, Chen SC, Zhang Y, Zhao NJ (2016) Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement. Adv Funct Mater 26(8):1178–1187

    CAS  Google Scholar 

  111. Zhu S-E, Krishna Ghatkesar M, Zhang C, Janssen GJ (2013) Graphene based piezoresistive pressure sensor. Appl Phys Lett 102(16):161904

    Google Scholar 

  112. Han X, Lu W, Yu W, Xu H, Bi S, Cai H (2020) Conductive and adhesive gluten ionic skin for eco-friendly strain sensor. J Mater Sci 56(5):3970–3980. https://doi.org/10.1007/s10853-020-05508-3

    Article  CAS  Google Scholar 

  113. Ng T, Liao WJ (2005) Structures, Sensitivity analysis and energy harvesting for a self-powered piezoelectric sensor. J Intell Mater Syst Struct 16(10):785–797

    Google Scholar 

  114. Rajala S, Siponkoski T, Sarlin E, MI Mettänen, S Vuoriluoto, A Pammo, J Juuti, OJ Rojas, S Franssila, S Tuukkanen (2016) interfaces, Cellulose nanofibril film as a piezoelectric sensor material. ACS Appl Mater Interfaces 8(24):15607–15614

    CAS  Google Scholar 

  115. Dong K, Wu Z, Deng J, Wang AC, Zou H, Chen C, Hu D, Gu B, Sun B, Wang ZL (2018) A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv Mater 30(43):1804944

    Google Scholar 

  116. Elsayes A, Sharma V, Yiannacou K, Koivikko A, Rasheed A, Sariola V (2020) Plant-based biodegradable capacitive tactile pressure sensor using flexible and transparent leaf skeletons as electrodes and flower petal as dielectric layer. Adv Sustain Syst 4(9):2000056

    CAS  Google Scholar 

  117. Guo Y, Chen S, Sun L, Yang L, Zhang L, Lou J, You Z (2020) Degradable and fully recyclable dynamic thermoset elastomer for 3d-printed wearable electronics. Adv Funct Mater 31(9):2009799

    Google Scholar 

  118. Guo Y, Zhong M, Fang Z, Wan P, Yu G (2019) A wearable transient pressure sensor made with mxene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett 19(2):1143–1150

    CAS  Google Scholar 

  119. Gao L, Zhu C, Li L, Zhang C, Liu J, Yu HD, Huang W (2019) All paper-based flexible and wearable piezoresistive pressure sensor. ACS Appl Mater Interfaces 11(28):25034–25042

    CAS  Google Scholar 

  120. Wei Y, Chen S, Dong X, Lin Y, Liu L (2017) Flexible piezoresistive sensors based on “dynamic bridging effect” of silver nanowires toward graphene. Carbon 113:395–403

    CAS  Google Scholar 

  121. Fang L, Zhang J, Wang W, Zhang Y, Chen F, Zhou J, Chen F, Li R, Zhou X, Xie Z (2020) Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes. ACS Appl Mater Interfaces 12(50):56393–56402

    CAS  Google Scholar 

  122. Li X, He L, Li Y, Chao M, Li M, Wan P, Zhang L (2021) Healable, degradable, and conductive MXene nanocomposite hydrogel for multifunctional epidermal sensors. ACS Nano 15(4):7765–7773

    CAS  Google Scholar 

  123. Curry EJ, Ke K, Chorsi MT, Wrobel KS, Miller AN, Patel A, Kim I, Feng J, Yue L, Wu Q, Kuo CL, Lo KW, Laurencin CT, Ilies H, Purohit PK, Nguyen TD (2018) Biodegradable piezoelectric force sensor. Proc Natl Acad Sci 115(5):909–914

    CAS  Google Scholar 

  124. Curry EJ, Le TT, Das R, Ke K, Santorella EM, Paul D, Chorsi MT, Tran KTM, Baroody J, Borges ER, Ko B, Golabchi A, Xin X, Rowe D, Yue L, Feng J, Morales-Acosta MD, Wu Q, Chen IP, Cui XT, Pachter J, Nguyen TD (2020) Biodegradable nanofiber-based piezoelectric transducer. Proc Natl Acad Sci 117(1):214–220

    CAS  Google Scholar 

  125. Hosseini ES, Manjakkal L, Shakthivel D, Dahiya R (2020) Glycine-Chitosan-based flexible biodegradable piezoelectric pressure sensor. ACS Appl Mater Interfaces 12(8):9008–9016

    CAS  Google Scholar 

  126. Selvarajan S, Kim A, Song SH (2020) Biodegradable piezoelectric transducer for powering transient implants. IEEE Access 8:68219–68225

    Google Scholar 

  127. Wang ZL (2020) Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv Energy Mater 10(17):2000137

    CAS  Google Scholar 

  128. Wang ZL (2015) Triboelectric nanogenerators as new energy technology and self-powered sensors–principles, problems and perspectives. Faraday Discuss 176:447–458

    Google Scholar 

  129. Wang J, Wu C, Dai Y, Zhao Z, Wang A, Zhang T, Wang ZL (2017) Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat Commun 8(1):88

    Google Scholar 

  130. Dong K, Peng X, Wang ZL (2020) Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligence. Adv Mater 32(5):1902549

    CAS  Google Scholar 

  131. Wu Z, Ding W, Dai Y, Dong K, Wu C, Zhang L, Lin Z, Cheng J, Wang ZL (2018) Self-powered multifunctional motion sensor enabled by magnetic-regulated triboelectric nanogenerator. ACS Nano 12(6):5726–5733

    CAS  Google Scholar 

  132. Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B (2017) 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 29(38):1702648

    Google Scholar 

  133. Wu Z, Cheng T, Wang ZL (2020) Self-powered sensors and systems based on nanogenerators. Sensors 20(10):2925

    CAS  Google Scholar 

  134. Dong K, Peng X, An J, Wang AC, Luo J, Sun B, Wang J, Wang ZL (2020) Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat Commun 11(1):2868

    CAS  Google Scholar 

  135. Dong K, Deng J, Ding W, Wang AC, Wang P, Cheng C, Wang YC, Jin L, Gu B, Sun B (2018) Versatile core–sheath yarn for sustainable biomechanical energy harvesting and real-time human-interactive sensing. Adv Energy Mater 8(23):1801114

    Google Scholar 

  136. Wang J, Li S, Yi F, Zi Y, Lin J, Wang X, Xu Y, Wang ZL (2016) Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun 7(1):12744

    CAS  Google Scholar 

  137. Dong K, Wang Y-C, Deng J, Dai Y, Zhang SL, Zou H, Gu B, Sun B, Wang ZL (2017) A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 11(9):9490–9499

    CAS  Google Scholar 

  138. Zheng Q, Zhang Y et al (2016) Biodegradable triboelectric nanogenerator as a life-time designed implantable power source. Sci Adv 2(3):e1501478

    Google Scholar 

  139. Jo S, Kim I, Jayababu N, Roh H, Kim Y, Kim D (2020) Antibacterial and soluble paper-based skin-attachable human motion sensor using triboelectricity. ACS Sustain Chem Eng 8(29):10786–10794

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support received from the Minister of Science and Technology (Grant No. 2016YFA0202701), the National Natural Science Foundation of China (Grant Nos. 61774016, 51432005, 5151101243, and 51561145021), and the Beijing Municipal Natural Science Foundation (Grant No. 2212052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiyi Wu, Jie Wang or Zhong Lin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Dong, K., Wu, Z. et al. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. J Mater Sci 56, 16765–16789 (2021). https://doi.org/10.1007/s10853-021-06323-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06323-0

Navigation