Skip to main content
Log in

Polarization-induced phase structure transition and change of photoluminescence in Er3+-doped (Ba, Ca)(Ti, Sn)O3-based multifunctional ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rare-earth elements-doped lead-free piezoelectric ceramics are a valuable multifunctional material. The Er3+-doped (Ba, Ca) (Ti, Sn)O3 (BCTS-Er) ceramics with various polymorphic phase transition (PPT) were synthesized through a traditional solid-state reaction route. The component with a coexisting phase structure of orthorhombic and tetragonal is abbreviated as BCTS-Er-I, and the component with a coexisting phase structure of rhombohedral and tetragonal is abbreviated as BCTS-Er-II. The BCTS-Er ceramic exhibits high piezoelectric properties (BCTS-Er-I: d33 = 260 pC/N; BCTS-Er-II: d33 = 310 pC/N) and strong green photoluminescence (PL) emission. The effects of polarization on the PL properties of the BCTS-Er ceramics with various PPT were systematically studied. Compared with the PL intensity of the unpoled sample, that of the poled BCTS-Er-I ceramics weakened by 70%, while that of the poled BCTS-Er-II ceramics increased by four times under the electric field at 10 kV/cm. The effect of polarization treatment on the PL properties of the BCTS-Er ceramics is attributed to the polarization-induced phase transition, lattice distortion, the symmetry of the host lattice, and domain reorientation.

Graphical abstract

Compared with the unpoled samples, the PL intensity of the poled BCTS-Er-I samples with O-T phase structure weakened by 70%, while that of the poled BCTS-Er- II samples with R-T phase structure increased by 4 times under an electric field of 10 kV/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Zhai Y, Du J, Chen C, Li W, Hao J (2020) The photoluminescence and piezoelectric properties of Eu2O3 doped KNN-based ceramics. J Alloys Compd 829:154518

    Article  CAS  Google Scholar 

  2. Li W, Wang Z, Hao J, Fu P, Du J, Chu R, Xu Z (2018) Poling effects on the structural, electrical and photoluminescence properties in Sm doped BCST piezoelectric ceramics. J Mater Chem C 6:11312–11319

    Article  CAS  Google Scholar 

  3. Zhang Q, Sun H, Zhang Y, Ihlefeld J (2014) Polarization-induced photoluminescence quenching in (Ba0.7Ca0.3TiO3)–(BaZr0.2Ti0.8O3): Pr ceramics. J Am Chem Soc 97:868–873

    CAS  Google Scholar 

  4. Zhang Y, Hao J, Mak CL, Wei X (2011) Effects of site substitutions and concentration on upconversion luminescence of Er3+-doped perovskite titanate. Opt Express 19:1824–1829

    Article  CAS  Google Scholar 

  5. Zhang P, Shen M, Fang L, Zheng F, Wu X, Shen J, Chen H (2008) Pr3+ photoluminescence in ferroelectric (Ba0.77Ca0.23)TiO3 ceramics: Sensitive to polarization and phase transitions. Appl Phys Lett 92:222908

    Article  Google Scholar 

  6. Asano M, Ohta R, Yamamoto T, Okamoto H, Yamaguchi H (2018) An opto-electro-mechanical system based on evanescently-coupled optical microbottle and electromechanical resonator. Appl Phys Lett 112:201103

    Article  Google Scholar 

  7. Yao Q, Wang F, Jin C, Tang Y, Wang T, Shi W (2013) Piezoelectric/photoluminescence effects in rare-earth doped lead-free ceramics. Appl Phys A - Mater 113:231–236

    Article  CAS  Google Scholar 

  8. Wei Y, Wu Z, Jia Y, Liu Y (2015) Piezoelectrically-induced stress-luminescence phenomenon in CaAl2O4:Eu2+. J Alloys Compd 646:86–89

    Article  CAS  Google Scholar 

  9. Huang B, Sun M, Peng D (2018) Intrinsic energy conversions for photon-generation in piezo-phototronic materials: A case study on alkaline niobates. Nano Energy 47:150–171

    Article  CAS  Google Scholar 

  10. Gottesman R, Gouda L, Kalanoor BS, Haltzi E, Tirosh S, Rosh-Hodesh E, Tischler Y, Zaban A, Quarti C, Mosconi E, De Angelis F (2015) Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J Phys Chem Lett 6:2332–2338

    Article  CAS  Google Scholar 

  11. Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F (2014) Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J Phys Chem Lett 5:2662–2669

    Article  CAS  Google Scholar 

  12. Risch M, Grimaud A, May KJ, Stoerzinger KA, Chen TJ, Mansour AN, Shao-Horn Y (2013) Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS. J Phys Chem C 117:8628–8635

    Article  CAS  Google Scholar 

  13. Zhang Y, Jie W, Chen P, Liu W, Hao J (2018) Ferroelectric and piezoelectric effects on the optical process in advanced materials and devices. Adv Mater 30:1707007

    Article  Google Scholar 

  14. Wu J, Wu Z, Qian W, Jia Y, Wang Y, Luo H (2016) Electric-field-treatment-induced enhancement of photoluminescence in Er3+-doped (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic. Mater Lett 184:131–133

    Article  CAS  Google Scholar 

  15. Chen L, Wong M-C, Bai G, Jie W, Hao J (2015) White and green light emissions of flexible polymer composites under electric field and multiple strains. Nano Energy 14:372–381

    Article  CAS  Google Scholar 

  16. Zou H, Yang X, Chen B, Du Y, Ren B, Sun X, Qiao X, Zhang Q, Wang F (2019) Thermal enhancement of upconversion by negative lattice expansion in orthorhombic Yb2W3O12. Angew Chem Int Edit 58:17255–17259

    Article  CAS  Google Scholar 

  17. Wang D, Fan Z, Rao G, Wang G, Liu Y, Yuan C, Ma T, Li D, Tan X, Lu Z, Feteira A, Liu S, Zhou C, Zhang S (2020) Ultrahigh piezoelectricity in lead-free piezoceramics by synergistic design. Nano Energy 76:104944

    Article  CAS  Google Scholar 

  18. Zheng T, Wu J, Xiao D, Zhu J (2018) Recent development in lead-free perovskite piezoelectric bulk materials. Prog Mater Sci 98:552–624

    Article  CAS  Google Scholar 

  19. Acosta M, Khakpash N, Someya T, Novak N, Jo W, Nagata H, Rossetti GA Jr, Rödel J (2015) Origin of the large piezoelectric activity in (1–x)Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 ceramics. Phys Rev B 91:104108

    Article  Google Scholar 

  20. Wu L, Xiao D, Wu J, Sun Y, Lin D, Zhu J, Yu P, Zhuang Y, Wei Q (2008) Good temperature stability of K0.5Na0.5NbO3 based lead-free ceramics and their applications in buzzers. J Eur Ceram Soc 28:2963–2968

    Article  CAS  Google Scholar 

  21. Lifante G, de Martínez Mendívil J, He R, Cantelar E, Ortega San Martín L, Sola D (2018) Transition probabilities of Er3+ ions in alumino-silicate glasses. J Lumin 203:305–312

    Article  CAS  Google Scholar 

  22. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  23. Lu DY, Sun XY, Liu B, Zhang JL, Ogata T (2014) Structural and dielectric properties, electron paramagnetic resonance, and defect chemistry of Pr-doped BaTiO3 ceramics. J Alloys Compd 615:25–34

    Article  CAS  Google Scholar 

  24. Chaiyo N, Cann DP, Vittayakorn N (2017) Lead-free (Ba, Ca)(Ti, Zr)O3 ceramics within the polymorphic phase region exhibiting large, fatigue-free piezoelectric strains. Mater Des 133:109–121

    Article  CAS  Google Scholar 

  25. Puli VS, Pradhan DK, Riggs BC, Chrisey DB, Katiyar RS (2014) Investigations on structure, ferroelectric, piezoelectric and energy storage properties of barium calcium titanate (BCT) ceramics. J Alloys Compd 584:369–373

    Article  CAS  Google Scholar 

  26. Fleury PA, Lazay PD (1971) Acoustic—soft-optic mode interactions in ferroelectric BaTiO3. Phys Rev Lett 26:1331–1334

    Article  CAS  Google Scholar 

  27. Lu DY, Ogata T, Unuma H, Li XC, Li NN, Sun XY (2011) Self-compensation characteristics of Eu ions in BaTiO3. Solid State Ionics 201:6–10

    Article  CAS  Google Scholar 

  28. Han DD, Lu DY, Sun XY (2013) Structural evolution and dielectric properties of (Ba1−xNdx)(Ti1−yFey)O3 ceramics. J Alloys Compd 576:24–29

    Article  Google Scholar 

  29. Lu DY, Cui SZ (2014) Defects characterization of Dy-doped BaTiO3 ceramics via electron paramagnetic resonance. J Eur Ceram Soc 34:2217–2227

    Article  CAS  Google Scholar 

  30. Lu DY, Sun X-Y, Toda M (2007) A novel high-k ‘Y5V’ barium titanate ceramics co-doped with lanthanum and cerium. J Phys Chem Solids 68:650–664

    Article  CAS  Google Scholar 

  31. Shanmugavelu B, Kumar VVRK (2014) Luminescence studies of Dy3+ doped bismuth zinc borate glasses. J Lumin 146:358–363

    Article  CAS  Google Scholar 

  32. Janbua W, Bongkarn T, Kolodiazhnyi T, Vittayakorn N (2017) High piezoelectric response and polymorphic phase region in the lead-free piezoelectric BaTiO3–CaTiO3–BaSnO3 ternary system. RSC Adv 7:30166–30176

    Article  CAS  Google Scholar 

  33. Sun M, Du J, Chen C, Fu P, Li P, Hao J, Yue Z, Li W (2020) Enhanced piezoelectric properties in M (M = Co or Zn)-doped Ba0.99Ca0.01 Ti0.98Zr0.02O3 ceramics. Ceram Int 46:17351–17360

    Article  CAS  Google Scholar 

  34. Zhang W, Cheng H, Yang Q, Hu F, Ouyang J (2016) Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films. Ceram Int 42:4400–4405

    Article  CAS  Google Scholar 

  35. Xu D, Yue X, Song J, Zhong S, Ma J, Bao L, Zhang L, Du S (2019) Improved dielectric and non-ohmic properties of (Zn + Zr) codoped CaCu3Ti4O12 thin films. Ceram Int 45:11421–11427

    Article  CAS  Google Scholar 

  36. Xu D, Yue X, Zhang Y, Song J, Chen X, Zhong S, Ma J, Ba L, Zhang L, Du S (2019) Enhanced dielectric properties and electrical responses of cobalt-doped CaCu3Ti4O12 thin films. J Alloys Compd 773:853–859

    Article  CAS  Google Scholar 

  37. Wang D, Fan Z, Zhou D, Khesro A, Murakami S, Feteira A, Zhao Q, Tan X, Reaney IM (2018) Bismuth ferrite-based lead-free ceramics and multilayers with high recoverable energy density. J Mater Chem A 6:4133–4144

    Article  CAS  Google Scholar 

  38. Badapanda T, Senthil V, Rout SK, Cavalcante LS, Simões AZ, Sinha TP, Panigrahi S, de Jesus MM, Longo E, Varela JA (2011) Rietveld refinement, microstructure, conductivity and impedance properties of Ba[Zr0.25Ti0.75]O3 ceramic. Curr Appl Phys 11:1282–1293

    Article  Google Scholar 

  39. Long P, Liu X, Long X, Yi Z (2017) Dielectric relaxation, impedance spectra, piezoelectric properties of (Ba, Ca)(Ti, Sn)O3 ceramics and their multilayer piezoelectric actuators. J Alloys Compd 706:234–243

    Article  CAS  Google Scholar 

  40. Wang G, Li J, Zhang X, Fan Z, Yang F, Feteira A, Zhou D, Sinclair DC, Ma T, Tan X, Wang D, Reaney IM (2019) Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energ Environ Sci 12:582–588

    Article  CAS  Google Scholar 

  41. Zou H, Peng D, Wu G, Wang X, Bao D, Li J, Li Y, Yao X (2013) Polarization-induced enhancement of photoluminescence in Pr3+ doped ferroelectric diphase BaTiO3-CaTiO3 ceramics. J Appl Phys 114:073103

    Article  Google Scholar 

  42. Feng Y, Wu J, Chi Q, Li W, Yu Y, Fei W (2020) Defects and aliovalent doping engineering in electroceramics. Chem Rev 120:1710–1787

    Article  CAS  Google Scholar 

  43. Ehre D, Cohen H, Lyahovitskaya V, Lubomirsky I (2008) X-ray photoelectron spectroscopy of amorphous and quasiamorphous phases of BaTiO3 and SrTiO3. Phys Rev B 77:184106

    Article  Google Scholar 

  44. Miot C, Husson E, Proust C, Erre R, Coutures JP (1998) Residual carbon evolution in BaTiO3 ceramics studied by XPS after ion etching. J Eur Ceram Soc 18:339–343

    Article  CAS  Google Scholar 

  45. Xue S, Deng H, Xie Q, Hu Y, Yan J, Zhao X, Wang F, Zhang Q, Luo L, Deng C, He C, Lin D, Li S, Wang X, Luo H (2019) Giant tunability of upconversion photoluminescence in Er3+-doped (K, Na)NbO3 single crystals. Nanoscale 11:16928–16934

    Article  CAS  Google Scholar 

  46. Khatua DK, Kalaskar A, Ranjan R (2016) Tuning photoluminescence response by electric field in electrically soft ferroelectrics. Phys Rev Lett 116:117601

    Article  Google Scholar 

  47. Wu J, Wu Z, Mao W, Jia Y (2015) The photoluminescence indicating compositional changes of Er3+-doped (Ba1−xCax)(Zr0.1Ti0.9)O3 piezoelectric ceramics. Mater Lett 149:74–76

    Article  CAS  Google Scholar 

  48. Wei Y, Wu Z, Jia Y, Wu J, Shen Y, Luo H (2014) Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr3+ doped (K0.5Na0.5)NbO3 lead-free ceramics. Appl Phys Lett 105:042902

    Article  Google Scholar 

  49. Ehmke MC, Glaum J, Hoffman M, Blendell JE, Bowma KJ (2013) In situ x-ray diffraction of biased ferroelastic switching in tetragonal lead-free (1-x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoelectrics. J Am Ceram Soc 96:2913–2920

    Article  CAS  Google Scholar 

  50. Li Q, Zhang M-H, Zhu Z-X, Wang K, Zhou J-S, Yao F-Z, Li J-F (2017) Poling engineering of (K, Na)NbO3-based lead-free piezoceramics with orthorhombic-tetragonal coexisting phases. J Mater Chem C Mater 5:549–556

    Article  CAS  Google Scholar 

  51. Ge W, Luo C, Devreugd CP, Zhang Q, Ren Y, Li J, Luo H, Viehland D (2013) Direct evidence of correlations between relaxor behavior and polar nano-regions in relaxor ferroelectrics: a case study of lead-free piezoelectrics Na0.5Bi0.5TiO3-x%BaTiO3. Appl Phys Lett 103:241914

    Article  Google Scholar 

  52. Ehmke MC, Glaum J, Hoffman M, Blendell JE, Bowma KJ (2013) The effect of electric poling on the performance of lead-free (1–x)Ba(Zr0.2Ti0.8)O3–x(Ba0.7Ca0.3)TiO3 piezoceramics. J Am Ceram Soc 96:1–7

    Article  Google Scholar 

  53. Hao JH, Zhang Y, Wei XH (2011) Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3:Yb/Er thin films. Angew Chem Int Ed 50:6876–6880

    Article  CAS  Google Scholar 

  54. Ren X, Gao J, Shi H, Huang L, Zhao S, Xu S (2021) A highly sensitive all-fiber temperature sensor based on the enhanced green upconversion luminescence in Lu2MoO6: Er3+/Yb3+ phosphors by co-doping Li+ ions. Optik 227:166084

    Article  CAS  Google Scholar 

  55. Li P, Fu Z, Wang F, Huan Y, Zhou Z, Zhai J, Shen B, Zhang S (2020) High piezoelectricity and stable output in BaHfO3 and (Bi0.5Na0.5)ZrO3 modified (K0.5Na0.5)(Nb0.96Sb0.04)O3 textured ceramics. Acta Mater 199:542–550

    Article  CAS  Google Scholar 

  56. Jin L, Huo R, Guo R, Li F, Wang D, Tian Y, Hu Q, Wei X, He Z, Yan Y, Liu G (2016) Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl Mater Inter 8:31109–31119

    Article  CAS  Google Scholar 

  57. Chen J, Cheng J, Guo J, Cheng Z, Wang J, Liu H, Zhang S (2019) Excellent thermal stability and aging behaviors in BiFeO3-BaTiO3 piezoelectric ceramics with rhombohedral phase. J Am Ceram Soc 103:374–381

    Article  Google Scholar 

  58. Acosta M, Novak N, Rojas V, Patel S, Vaish R, Koruza J, Rossetti GA, Rödel J (2017) BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl Phys Rev 4:041305

    Article  Google Scholar 

  59. Bai W, Wang L, Zhao X, Zheng P, Wen F, Li L, Zhai J, Ji Z (2019) Tailoring frequency-insensitive large field-induced strain and energy storage properties in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3-modified (Bi0.5Na0.5)TiO3 lead-free ceramics. Dalton T 48:10160–10173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2016YFB0402701), the National Natural Science Foundation of China (No. 51701091), the Innovation Team of Higher Educational Science and Technology Program of Shandong Province (No. 2019KJA025), the Natural Science Foundation of Shandong Province of China (No. ZR2020ME031 and No. ZR2020ME033) and Key Laboratory of Inorganic Functional Materials and Devices of Chinese Academy of Sciences (Grant No. KLIFMD202008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jigong Hao or Wei Li.

Additional information

Handling Editor: Till Froemling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1066 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Li, P., Hu, C. et al. Polarization-induced phase structure transition and change of photoluminescence in Er3+-doped (Ba, Ca)(Ti, Sn)O3-based multifunctional ceramics. J Mater Sci 56, 10204–10217 (2021). https://doi.org/10.1007/s10853-021-05966-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05966-3

Navigation