Skip to main content

Advertisement

Log in

High-performance ultra-low-k fluorine-doped nanoporous organosilica films for inter-layer dielectric

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Development of low-k materials is critical for further improving the performance of integrated circuits. In this work, a novel type of fluorine-doped ultra-low-k porous SiCOH films has been produced. The chemical composition and bond configurations of the nanometer-scale porous films were determined using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A low dielectric constant of 2.15 was achieved with an elastic modulus of 4.84 GPa which is significantly larger than the minimum requirement of 4 GPa for ultra-large-scale integrated circuit inter-layer dielectric applications. The cage/net Si–O–Si ratio method has been proposed to elucidate the influence of molecular structure on the mechanical properties of the film. The breaking and remaking of certain bonds under UV irradiation results in the formation of increased amounts of the net Si–O–Si molecular configuration which plays a major role in increasing the elastic modulus of the film. Furthermore, it was found that increase in elastic modulus is proportional to the duration of irradiation and an increase of 20% can be achieved after 4 h of UV irradiation. The methodology and approach described in this paper can be further followed to study the mechanical properties of ultra-low k materials under various annealing and porosity conditions, and to use fluorine-doping and UV irradiation processes for optimum ultra-low k materials in application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Xiao C, He H, Li J, Cao S, Zhu W (2017) An effective and efficient numerical method for thermal management in 3D stacked integrated circuits. Appl Therm Eng 121:200–209

    Article  Google Scholar 

  2. Borah D, Cummins C, Rasappa S et al (2018) Nanopatterning via self-assembly of a lamellar-forming polystyrene-block-poly(dimethylsiloxane) diblock copolymer on topographical substrates fabricated by nanoimprint lithography. Nanomaterials 8:32–43

    Article  Google Scholar 

  3. Li H, Tie J, Li J et al (2018) High-performance sub-10-nm monolayer black phosphorene tunneling transistors. Nano Res 11:2658–2668

    Article  CAS  Google Scholar 

  4. Zhang J, Zhang G, Gao Y, Sun R, Wong CP (2016) Ultra-low- κ HFPDB-based periodic mesoporous organosilica film with high mechanical strength for interlayer dielectric. J Mater Sci 51:7966–7976. https://doi.org/10.1007/s10853-016-0066-6

    Article  CAS  Google Scholar 

  5. Maex K, Baklanov MR, Shamiryan D, Lacopi F, Brongersma SH, Yanovitskaya ZS (2006) Low dielectric constant materials for microelectronics. J Appl Phys 93:8793–8841

    Article  Google Scholar 

  6. Fu S, Qian KJ, Ding SJ (2010) Characterization of ultra-low k porous organosilica thin films. In: IEEE international conference on solid-state and integrated circuit technology, pp 1033–1035

  7. Aono M, Nitta S (2002) High resistivity and low dielectric constant amorphous carbon nitride films: application to low-k materials for ULSI. Diam Relat Mater 11:1219–1222

    Article  CAS  Google Scholar 

  8. Grill A (2003) Diamond-like carbon coatings as biocompatible materials—an overview. Diam Relat Mater 12:166–170

    Article  CAS  Google Scholar 

  9. Sakaue H, Yoshimura N, Shingubara S, Takahagi T (2003) Low dielectric constant porous diamond films formed by diamond nanoparticles. Appl Phys Lett 83:2226–2228

    Article  CAS  Google Scholar 

  10. Sugiyama T, Tai T, Sugino T (2002) Effect of annealing on dielectric constant of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition. Appl Phys Lett 80:4214–4216

    Article  CAS  Google Scholar 

  11. Grill A (2003) Plasma enhanced chemical vapor deposited SiCOH dielectrics: from low-k to extreme low-k interconnect materials. J Appl Phys 93:1785–1790

    Article  CAS  Google Scholar 

  12. Kim HS, Xie YH, Devincentis M, Itoh T, Jenkins KA (2003) Unoxidized porous Si as an isolation material for mixed-signal integrated circuit applications. J Appl Phys 93:4226–4232

    Article  CAS  Google Scholar 

  13. Yu S, Wong TKS, Hu X, Pita K (2003) The comparison of thermal and dielectric properties of silsesquioxane films cured in nitrogen and in air. Chem Phys Lett 380:111–116

    Article  CAS  Google Scholar 

  14. Grill A, Patel V (2001) Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition. Appl Phys Lett 79:803–805

    Article  CAS  Google Scholar 

  15. Grill A, Patel V, Jahnes C (1998) Novel low k dielectrics based on diamondlike carbon materials. J Electrochem Soc 145:1649–1653

    Article  CAS  Google Scholar 

  16. Yang S, Mirau PA, Pai C-S, Nalamasu O, Reichmanis E, Pai JC, Obeng YS, Seputro J, Lin EK, Lee H-J, Sun J, Gidley DW (2002) Nanoporous ultralow dielectric constant organosilicates templated by triblock copolymers. Chem Mater 14:369–374

    Article  CAS  Google Scholar 

  17. Lee HJ, Yang CS, Choi CK (2004) Effect of UV illumination on deposition of low-k Si-O-C(-H) films by PECVD. Mater Sci Forum 449–452:473–476

    Article  Google Scholar 

  18. Dubois G, Volksen W, Magbitang T, Miller RD, Gage DM, Dauskardt RH (2010) Molecular network reinforcement of sol–gel glasses. Adv Mater 19:3989–3994

    Article  Google Scholar 

  19. Yuan G-C, Xu Z, Zhang S-L (2009) Study on characteristics of a double-conductible channel organic thin-film transistor with an ultra-thin hole-blocking layer. Chin Phys B 18:3990–3994

    Article  CAS  Google Scholar 

  20. Wang P-F, Ding S-J, Zhang J-Y, Zhang DW, Wang J-T, Lee WW (2001) Low-dielectric-constant α-SiCOF film for ULSI interconnection prepared by PECVD with TEOS/C4F8/O2. Appl Phys A 72:721–724

    Article  CAS  Google Scholar 

  21. Grill A, Neumayer DA (2003) Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization. J Appl Phys 94:6697–6707

    Article  CAS  Google Scholar 

  22. Kim C, Jung A, Navamathavan R, Choi C, Woo JK (2008) Bonding configuration and electrical properties of carbon-incorporated low-dielectric-constant SiOC(-H) films withnano-pore structures deposited by using PECVD. J Korean Phys Soc 53:2621–2626

    Article  CAS  Google Scholar 

  23. Ding ZJ, Wang YP, Liu WJ, Ding SJ, Baklanov M, Zhang DW (2018) Characterization of PECVD ultralow dielectric constant porous SiOCH films using triethoxymethylsilane precursor and cinene porogen. J Phys D Appl Phys 51:115103

    Article  Google Scholar 

  24. Jensen WB (1996) Electronegativity from avogadro to pauling: part 1: origins of the electronegativity concept. J Chem Educ 73:11–20

    Article  CAS  Google Scholar 

  25. Chen WC, Yen CT (2000) Effects of slurry formulations on chemical-mechanical polishing of low dielectric constant polysiloxanes: hydrido-organo siloxane and methyl silsesquioxane. J Vac Sci Technol B Microelectron Nanometer Struct 18:201–207

    Article  Google Scholar 

  26. Lee LH, Chen WC, Liu WC (2002) Structural control of oligomeric methyl silsesquioxane precursors and their thin‐film properties. J Polym Sci Part A Polym Chem 40:1560–1571

    Article  CAS  Google Scholar 

  27. Li JG, Chu WC, Kuo SW (2015) Hybrid mesoporous silicas and microporous POSS-based frameworks incorporating evaporation-induced self-assembly. Nanomaterials 5:1087–1101

    Article  CAS  Google Scholar 

  28. Zhou W, Bailey S, Sooryakumar R et al (2011) Elastic properties of porous low-k dielectric nano-films. J Appl Phys 110:043520. https://doi.org/10.1063/1.3624583

    Article  CAS  Google Scholar 

  29. Chang YK, Kim SH, Navamathavan R, Chi KC, Jeung WY (2007) Characteristics of low- k SiOC(–H) films deposited at various substrate temperature by PECVD using DMDMS/O 2 precursor. Thin Solid Films 516:340–344

    Article  Google Scholar 

  30. Verdonck P, Wang C, Le QT et al (2014) Advanced PECVD SiCOH low- k films with low dielectric constant and/or high Young’s modulus. Microelectron Eng 120:225–229

    Article  CAS  Google Scholar 

  31. An SJ, Navamathavan R, Lee KM, Chi KC (2008) Plasma characteristics of low- k SiOC(–H) films prepared by using plasma enhanced chemical vapor deposition from DMDMS/O 2 precursors. Surf Coat Technol 202:5693–5696

    Article  Google Scholar 

  32. Ding S, Wang P, Zhang W, Wang J, Wei WL (2001) Analysis of the X-ray photoelectron spectra of a-SiOCF films prepared by plasma-enhanced chemical vapour deposition. Chin Phys 10:324–343

    Article  CAS  Google Scholar 

  33. Vanstreels K, Wu C, Gonzalez M et al (2013) Effect of pore structure of nanometer scale porous films on the measured elastic modulus. Langmuir ACS J Surf Colloids 29:12025–12035

    Article  CAS  Google Scholar 

  34. Jiang T, Zhu B, Ding SJ, Fan Z, Zhang D (2014) High-performance ultralow dielectric constant carbon-bridged mesoporous organosilica films for advanced interconnects. J Mater Chem C 2:6502–6510

    Article  CAS  Google Scholar 

  35. Kim BR, Kang JW, Lee KY, Son JM, Ko MJ (2007) Physical properties of low- k films based on the co. J Mater Sci 42:4591–4602. https://doi.org/10.1007/s10853-006-0575-9

    Article  CAS  Google Scholar 

  36. Yang CS, Choi CK (2006) Mechanical property of the low dielectric carbon doped silicon oxide thin film grown from MTMS/O source. Curr Appl Phys 6:243–247

    Article  Google Scholar 

  37. Fu S, Qian KJ, Ding SJ (2011) Preparation and characterization of ultralow-dielectric-constant porous SiCOH thin films using 1,2-bis(triethoxysilyl)ethane, triethoxymethylsilane, and a copolymer template. J Electron Mater 10:2139–2148

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program, No. 2015CB057206). Liancheng Wang acknowledges the Professorship Start-up Funding (No. 502045005), Innovation-Driven Project of Central South University (No. 502501003) and State Key Laboratory of High Performance Complex Manufacturing, Central South University (No. ZZYJKT2018-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Chen or Wenhui Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zheng, G., Ding, Z. et al. High-performance ultra-low-k fluorine-doped nanoporous organosilica films for inter-layer dielectric. J Mater Sci 54, 2379–2391 (2019). https://doi.org/10.1007/s10853-018-3013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3013-x

Keywords

Navigation