Skip to main content

Advertisement

Log in

Ultra-low-κ HFPDB-based periodic mesoporous organosilica film with high mechanical strength for interlayer dielectric

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel bridged organosilane precursor with star-shaped construction, [hexfluoropropane-2,2-diyl)dibenzyl-bridged organosilane (HFPDBO)], is prepared by facile organic synthesis method. The resultant HFPDBO precursor is mixed with porogen and acid catalyst to prepare periodic mesoporous organosilica (PMO) thin film via evaporation-induced self-assembly after spin-coating procedure. All the as-prepared HFPDB-based PMO thin film has been characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance spectrum, scanning electron microscopy, transmission electron microscope, and small-angle X-ray diffraction, respectively. Thereinto, the HFPDB-based PMO thin film with weight ratio of porogen to precursor (0.75:1) possesses excellent dielectric property (1.58@1 MHz of dielectric constants), high mechanical property (5.54 ± 0.11 GPa of Young’s modulus) and hydrophobic property (90.1° of water contact angle) simultaneously. These low dielectric constant, high mechanical strength, and the hydrophobicity suggest potential application of the HFPDB-based PMO thin films as low-k materials in microelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Martin SJ, Godschalx JP, Mills ME et al (2000) Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect. Adv Mater 12(12):1769–1778

    Article  Google Scholar 

  2. Shamiryan D, Abell T, Iacopi F et al (2004) Low-k dielectric materials. Mater Today 7(04):34–39

    Article  Google Scholar 

  3. Vora RH, Krishnan PSG, Goh SH et al (2001) Synthesis and properties of designed low-k fluoro-copolyetherimides. Part 1. Adv Funct Mater 11(5):361–373

    Article  Google Scholar 

  4. Morgen M, Ryan ET, Zhao JH et al (2000) Low dielectric constant materials for ULSI interconnects. Annu Rev Mater Sci 30(1):645–680

    Article  Google Scholar 

  5. Mcgahay V (2010) Porous dielectrics in microelectronic wiring applications. Materials 3(1):536–562

    Article  Google Scholar 

  6. Grill A, Neumayer DA (2003) Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization. J Appl Phys 94(10):6697–6707

    Article  Google Scholar 

  7. Kikuchi Y, Wada A, Kurotori T et al (2013) Non-porous ultra-low- k SiOCH (k = 2.3) for damage-free integration and Cu diffusion barrier. J Phys D-Appl Phys 46(39):395203–395209

    Article  Google Scholar 

  8. Xu J, Moxom et al (2002) Porosity in porous methyl-silsesquioxane (MSQ) films. Appl Surf Sci 194(1):189–194

    Article  Google Scholar 

  9. Lee HJ, Soles CL, Liu DW et al (2004) Structural characterization of porous low-k thin films prepared by different techniques using x-ray porosimetry. J Appl Phys 95(5):2355–2359

    Article  Google Scholar 

  10. Geng Z, Huo M, Mu J et al (2014) Ultra low dielectric constant soluble polyhedral oligomeric silsesquioxane (POSS)–poly(aryl ether ketone) nanocomposites with excellent thermal and mechanical properties. J Mater Chem C 2(6):1094–1103

    Article  Google Scholar 

  11. Goethals F, Ciofi I, Madia O et al (2012) Ultra-low-k cyclic carbon-bridged PMO films with a high chemical resistance. J Mater Chem 22(17):8281–8286

    Article  Google Scholar 

  12. Maex K, Baklanov MR, Shamiryan D et al (2003) Low dielectric constant materials for microelectronics. J Appl Phys 93(11):8793–8841

    Article  Google Scholar 

  13. Hatton BD, Landskron K, Hunks WJ (2006) Materials chemistry for low-k materials. Mater Today 9(3):22–31

    Article  Google Scholar 

  14. Makoto S, Wendong W, Lofgreen JE et al (2011) Low-k periodic mesoporous organosilica with air walls: POSS-PMO. J Am Chem Soc 133(45):18082–18085

    Article  Google Scholar 

  15. Huang Y, Economy J (2006) New high strength low-k spin-on thin films for IC application. Macromolecules 39(39):1850–1853

    Article  Google Scholar 

  16. Lu HY, Teng CL, Kung CH et al (2011) Preparing mesoporous low-k films with high mechanical strength from noncrystalline silica particles. Ind Eng Chem Res 50(6):3265–3273

    Article  Google Scholar 

  17. Hunks WJ, Ozin GA (2005) Challenges and advances in the chemistry of periodic mesoporous organosilicas (PMOs). J Mater Chem 15:35–36

    Google Scholar 

  18. Wills AW, Michalak DJ, Ercius P et al (2015) Block copolymer packing limits and interfacial reconfigurability in the assembly of periodic mesoporous organosilicas. Adv Funct Mater 25(26):4120–4128

    Article  Google Scholar 

  19. Hoffmann F, Cornelius M, Morell J (2006) Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed 45(20):3216–3251

    Article  Google Scholar 

  20. Barbara P, Andreas K, Thomas B (2011) Mesoporous structures confined in anodic alumina membranes. Adv Mater 23(21):2395–2412

    Article  Google Scholar 

  21. Edelstein D (2008) Extendibility of Cu/low-k/airgap BEOL. Electrochem Soc 28:2073

    Google Scholar 

  22. Hatton B, Landskron K, Whitnall W et al (2005) Spin-coated periodic mesoporous organosilica thin films—towards a new generation of low-dielectric-constant materials. Adv Funct Mater 15(5):823–829

    Article  Google Scholar 

  23. Jiang T, Zhu B, Ding SJ et al (2014) High-performance ultralow dielectric constant carbon-bridged mesoporous organosilica films for advanced interconnects. J Mater Chem C 2(32):6502–6510

    Article  Google Scholar 

  24. Liu HC, Su WC, Liu YL (2011) Self-assembled benzoxazine-bridged polysilsesquioxanes exhibiting ultralow-dielectric constants and yellow-light photoluminescent emission. J Mater Chem 21(20):7182–7187

    Article  Google Scholar 

  25. Wang W, Lofgreen JE, Ozin GA (2010) Why PMO? Towards functionality and utility of periodic mesoporous organosilicas. Small 6(23):2634–2642

    Article  Google Scholar 

  26. Driessche IV, Der Voort PV (2013) Sealed ultra low-k organosilica films with improved electrical, mechanical and chemical properties. J Mater Chem C 1(25):3961–3966

    Article  Google Scholar 

  27. Yuan H, Xu J, Xie L (2011) Ultra low-dielectric-constant methylated mesoporous silica films with high hydrophobicity and stability. Mater Chem Phys 129(3):1195–1200

    Article  Google Scholar 

  28. Rathore JS, Interrante LV, Dubois G (2008) Adv Funct Mater 18(24):4022–4028

    Article  Google Scholar 

  29. Fiorilli S, Camarota B, Garrone E (2011) Carboxylic groups in mesoporous silica and ethane-bridged organosilica: effect of the surface on the reactivity. Phys Chem Chem Phys 13(3):1201–1209

    Article  Google Scholar 

  30. Wang W, Grozea D, Kohli S (2011) Water repellent periodic mesoporous organosilicas. ACS Nano 5(2):1267–1275

    Article  Google Scholar 

  31. Grosso D, Cagnol F, Soler-Illia GJAA (2004) Fundamentals of mesostructuring through evaporation-induced self-assembly. Adv Funct Mater 14(4):309–322

    Article  Google Scholar 

  32. Acharya A, Sanyal SK, Moulik SP (2001) Physicochemical investigations on microemulsification of eucalyptol and water in presence of polyoxyethylene (4) lauryl ether (Brij-30) and ethanol. Int J Pharm 229(1):213–226

    Article  Google Scholar 

  33. Landskron K, Hatton BD, Perovic DD (2003) Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings. Science 302(5643):266–269

    Article  Google Scholar 

  34. Pai RA, Watkins JJ (2006) Synthesis of mesoporous organosilicate films in supercritical carbon dioxide. Adv Mater 18(2):241–245

    Article  Google Scholar 

  35. Solymosi F, Bánsági T (1979) Infrared spectroscopic study of the adsorption of isocyanic acid. J Phys Chem 83(4):552–553

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 21201175), Guangdong and Shenzhen Innovative Research Team Program (No. 2011D052, KYPT20121228160843692), and R&D Funds for basic Research Program of Shenzhen (Grant No. JCYJ20120615140007998, JCYJ20150401145529012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoping Zhang or Rong Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Zhang, G., Gao, Y. et al. Ultra-low-κ HFPDB-based periodic mesoporous organosilica film with high mechanical strength for interlayer dielectric. J Mater Sci 51, 7966–7976 (2016). https://doi.org/10.1007/s10853-016-0066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0066-6

Keywords

Navigation