Skip to main content

Advertisement

Log in

Rational design of graphene @ nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium–sulfur batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lithium sulfur (Li–S) batteries show great prospect as a next generation high energy density rechargeable battery systems. However, the practical utilization of Li–S batteries is still obstructed by the shuttle effects which inducing the fast capacity fading and the loss of active sulfur. Herein, a special graphene @ nitrogen and phosphorous dual-doped porous carbon (N–P–PC/G) is presented to modify a commercial separator for an advanced Li–S battery. The N–P–PC/G nanosheet employs graphene layer as an excellent conductive framework covered with uniform layers of N, P dual-doped porous carbon on both sides which possessing massive interconnected meso-/micropores. It is demonstrated that the N–P–PC/G-modified separator can suppress the shuttle effects by coupling interactions including physical absorption, chemical adsorption and interfacial interaction. With the aid of the N–P–PC/G-modified separator, the pure sulfur cathode with high-sulfur loading of 3 mg cm−2 offers a high initial discharge capacity of 1207 mA h g−1 at 0.5 C (1 C = 1675 mA h g−1), and a maintained capacity of 635 mA h g−1 (fading rate of only 0.095% per cycle), after 500 cycles. This work suggests that combining hybrid nanocarbon with multi-heteroatom doping to modify the commercial separator is an effective approach to obtain high electrochemical performance Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63

    Article  Google Scholar 

  2. Pope MA, Aksay IA (2015) Structural design of cathodes for Li–S batteries. Adv Energy Mater 5(16):1500124

    Article  Google Scholar 

  3. Yang Y, Zheng G, Cui Y (2013) Nanostructured sulfur cathodes. Chem Soc Rev 42(7):3018–3032

    Article  Google Scholar 

  4. Fang R, Zhao S, Hou P et al (2016) 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li–S batteries. Adv Mater 28(17):3374–3382

    Article  Google Scholar 

  5. Hwang J-Y, Kim HM, Lee S-K et al (2016) High-energy, high-rate, lithium–sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer. Adv Energy Mater 6(1):1501480

    Article  Google Scholar 

  6. Wang Q, Wen Z, Yang J et al (2016) Electronic and ionic co-conductive coating on the separator towards high-performance lithium–sulfur batteries. J Power Sour 306:347–353

    Article  Google Scholar 

  7. Barchasz C, Leprêtre J-C, Alloin F, Patoux S (2012) New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sour 199:322–330

    Article  Google Scholar 

  8. Manthiram A, Fu Y, Chung SH, Zu C, Su YS (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114(23):11751–11787

    Article  Google Scholar 

  9. Sahore R, Levin BDA, Pan M, Muller DA, DiSalvo FJ, Giannelis EP (2016) Design principles for optimum performance of porous carbons in lithium–sulfur batteries. Adv Energy Mater 6(14):1600134

    Article  Google Scholar 

  10. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506

    Article  Google Scholar 

  11. Sohn H, Gordin ML, Regula M et al (2016) Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium–sulfur batteries. J Power Sour 302:70–78

    Article  Google Scholar 

  12. Yan J, Li B, Liu X (2015) Nano-porous sulfur–polyaniline electrodes for lithium–sulfur batteries. Nano Energy 18:245–252

    Article  Google Scholar 

  13. Li Z, Zhang J, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angew Chem Int Ed 54(44):12886–12890

    Article  Google Scholar 

  14. Liang X, Nazar LF (2016) In situ reactive assembly of scalable core–shell sulfur–MnO2 composite cathodes. ACS Nano 10(4):4192–4198

    Article  Google Scholar 

  15. Wu F, Lee JT, Nitta N, Kim H, Borodin O, Yushin G (2015) Lithium iodide as a promising electrolyte additive for lithium–sulfur batteries: mechanisms of performance enhancement. Adv Mater 27(1):101–108

    Article  Google Scholar 

  16. Azimi N, Weng W, Takoudis C, Zhang Z (2013) Improved performance of lithium–sulfur battery with fluorinated electrolyte. Electrochem Commun 37:96–99

    Article  Google Scholar 

  17. Yao H, Yan K, Li W et al (2014) Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy Environ Sci 7(10):3381–3390

    Article  Google Scholar 

  18. Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy. doi:10.1038/nenergy.2016.132

    Google Scholar 

  19. Su YS, Manthiram A (2012) Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun. doi:10.1038/ncomms2163

    Google Scholar 

  20. Deng N, Kang W, Liu Y, Ju J, Wu D, Li L et al (2016) A review on separators for lithium sulfur battery: progress and prospects. J Power Sour 331:132–155

    Article  Google Scholar 

  21. Xiang Y, Li J, Lei J, Liu D, Xie Z, Qu D et al (2016) Advanced separators for lithium–ion and lithium–sulfur batteries: a review of recent progress. ChemSusChem 9:3023–3039

    Article  Google Scholar 

  22. Chung S-H, Manthiram A (2014) Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium–sulfur batteries. Adv Funct Mater 24(33):5299–5306

    Article  Google Scholar 

  23. Chung SH, Manthiram A (2014) A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater 26(43):7352–7357

    Article  Google Scholar 

  24. Balach J, Jaumann T, Klose M, Oswald S, Eckert J, Giebeler L (2015) A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium–sulfur batteries. Adv Mater 26(43):7352–7357

    Google Scholar 

  25. Ma G, Wen Z, Wang Q et al (2015) Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J Power Sour 273:511–516

    Article  Google Scholar 

  26. Zhou X, Liao Q, Tang J, Bai T, Chen F, Yang J (2016) A high-level N-doped porous carbon nanowire modified separator for long-life lithium–sulfur batteries. J Electroanal Chem 768:55–61

    Article  Google Scholar 

  27. Zu C, Manthiram A (2014) High-Performance Li/dissolved polysulfide batteries with an advanced cathode structure and high sulfur content. Adv Energy Mater 4(18):1400897

    Article  Google Scholar 

  28. Su YS, Manthiram A (2012) A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun 48(70):8817–8819

    Article  Google Scholar 

  29. Zhou G, Li L, Wang DW et al (2015) A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li–S batteries. Adv Mater 27(4):641–647

    Article  Google Scholar 

  30. Zhao Y, Liu M, Lv W et al (2016) Dense coating of Li4Ti5O12 and graphene mixture on the separator to produce long cycle life of lithium–sulfur battery. Nano Energy 30:1–8

    Article  Google Scholar 

  31. Yang J, Liao Q, Zhou X, Liu X, Tang J (2013) Efficient synthesis of graphene-based powder via in situ spray pyrolysis and its application in lithium ion batteries. RSC Adv 3(37):16449–16455

    Article  Google Scholar 

  32. Niu S, Lv W, Zhang C et al (2015) A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium–sulfur batteries. J Mater Chem A 3(40):20218–20224

    Article  Google Scholar 

  33. Bai H, Sheng K, Zhang P, Li C, Shi G (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21(46):18653–18658

    Article  Google Scholar 

  34. Pan L, Yu G, Zhai D et al (2012) Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci 109(24):9287–9292

    Article  Google Scholar 

  35. Yang J, Chen F, Li C, Bai T, Long B, Zhou X (2016) A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium–sulfur batteries. J Mater Chem A 4(37):14324–14333

    Article  Google Scholar 

  36. Gu X, Tong C-J, Lai C et al (2015) A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J Mater Chem A 3(32):16670–16678

    Article  Google Scholar 

  37. Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760

    Article  Google Scholar 

  38. Zeng Q, Li F, Gentle IR, Cheng H-M, Wang D-W (2015) Dispersible percolating carbon nano-electrodes for improvement of polysulfide utilization in Li–S batteries. Carbon 93:161–168

    Article  Google Scholar 

  39. Xiao Z, Yang Z, Wang L et al (2015) A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium–sulfur batteries. Adv Mater 27(18):2891–2898

    Article  Google Scholar 

  40. Wang G, Lai Y, Zhang Z, Li J, Zhang Z (2015) Enhanced rate capability and cycle stability of lithium–sulfur batteries with a bifunctional MCNT@PEG-modified separator. J Mater Chem A 3:7139–7144

    Article  Google Scholar 

  41. Yang J, Xie J, Zhou X et al (2014) Functionalized N-doped porous carbon nanofiber webs for a lithium–sulfur battery with high capacity and rate performance. J Phys Chem C 118(4):1800–1807

    Article  Google Scholar 

  42. Zhou X, Xie J, Yang J et al (2013) Improving the performance of lithium–sulfur batteries by graphene coating. J Power Sour 243:993–1000

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was provided by the National Nature Science Foundation of China (Grant Nos. 51204209 and 51274240) and Grants from the Project of Innovation-driven Plan in Central South University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liao, Q., Bai, T. et al. Rational design of graphene @ nitrogen and phosphorous dual-doped porous carbon sandwich-type layer for advanced lithium–sulfur batteries. J Mater Sci 52, 7719–7732 (2017). https://doi.org/10.1007/s10853-017-1029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1029-2

Keywords

Navigation