Skip to main content

Advertisement

Log in

Combined effect of texture and nanotwins on mechanical properties of the nanostructured Cu and Cu–Al films prepared by magnetron sputtering

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lowering stacking fault energy (SFE) of face-centered cubic (fcc, e.g., Cu) metals by adding alloying elements (e.g., Al) is an effective way to create nanotwins (NTs). In this work, nanostructured Cu thin films with different Al additions (0, 1, 5, and 10 at.%) were prepared by magnetron sputtering deposition on silicon and polymer substrate, respectively, to investigate the effect of lowering SFE on microstructural features and mechanical properties. The Al addition can effectively reduce the SFE of Cu thin films, which in turn promotes the formation of NTs and facilitate the growth of (111) texture but suppresses (100) texture of Cu–Al thin films. Increasing the Al addition to ~10 %, the crossed NTs network emerges in the nanostructured Cu–Al thin films. The combined effect of texture and NTs on hardness and ductility was demonstrated, and an optimal hardness/ductility (6.2 GPa/6.3 %) combination was achieved in the Cu–5.0 at.% Al film. Our findings provide deep insight into tailoring the mechanical properties of Cu nanostructures by Al alloying.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Christian JW, Mahajan S (1995) Deformation twinning. Prog Mater Sci 39:1

    Article  Google Scholar 

  2. Lu L, Chen X, Huang X, Lu K (2009) Revealing the maximum strength in nanotwinned copper. Science 323:607

    Article  Google Scholar 

  3. Beyerlein IJ, Zhang X, Misra A (2014) Growth twins and deformation twins in metals. Ann Rev Mater Res 44:329

    Article  Google Scholar 

  4. Li X, Wei Y, Lu L, Lu K, Gao H (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464:877

    Article  Google Scholar 

  5. Qu S, An XH, Yang HJ et al (2009) Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater 57:1586

    Article  Google Scholar 

  6. Zhang Y, Tao NR, Lu K (2011) Effects of stacking fault energy, strain rate and temperature on microstructure and strength of nanostructured Cu–Al alloys subjected to plastic deformation. Acta Mater 59:6048

    Article  Google Scholar 

  7. Rohatgi A, Vecchio K, Gray G (2001) The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: deformation twinning, work hardening, and dynamic recovery. Metall Mater Trans A 32:135

    Article  Google Scholar 

  8. Zhang X, Misra A, Wang H et al (2004) Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater 52:995

    Article  Google Scholar 

  9. Lu K, Lu L, Suresh S (2009) Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349

    Article  Google Scholar 

  10. Wu XL, Zhu YT (2008) Inverse grain-size effect on twinning in nanocrystalline Ni. Phys Rev Lett 101:025503

    Article  Google Scholar 

  11. Freund LB, Suresh S (2004) Thin film materials: stress, defect formation and surface evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Wang B, Idrissi H, Shi H et al (2012) Texture-dependent twin formation in nanocrystalline thin Pd films. Scripta Mater 66:866

    Article  Google Scholar 

  13. Sonnweber-Ribic P, Gruber PA, Dehm G, Strunk HP, Arzt E (2012) Kinetics and driving forces of abnormal grain growth in thin Cu films. Acta Mater 60:2397

    Article  Google Scholar 

  14. Thompson CV, Carel R (1996) Stress and grain growth in thin films. J Mech Phys Solids 44:657

    Article  Google Scholar 

  15. Sonnweber-Ribic P, Gruber P, Dehm G, Arzt E (2006) Texture transition in Cu thin films: electron backscatter diffraction vs. X-ray diffraction. Acta Mater 54:3863

    Article  Google Scholar 

  16. An XH, Wu SD, Zhang ZF, Figueiredo RB, Gao N, Langdon TG (2010) Evolution of microstructural homogeneity in copper processed by high-pressure torsion. Scripta Mater 63:560

    Article  Google Scholar 

  17. An XH, Lin QY, Wu SD et al (2011) The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion. Scripta Mater 64:954

    Article  Google Scholar 

  18. An XH, Lin QY, Wu SD et al (2011) Formation of fivefold deformation twins in an ultrafine-grained copper alloy processed by high-pressure torsion. Scripta Mater 64:249

    Article  Google Scholar 

  19. Hamdi F, Asgari S (2010) Influence of stacking fault energy and short-range ordering on dynamic recovery and work hardening behavior of copper alloys. Scripta Mater 62:693

    Article  Google Scholar 

  20. Velasco L, Polyakov MN, Hodge AM (2014) Influence of stacking fault energy on twin spacing of Cu and Cu–Al alloys. Scripta Mater 83:33

    Article  Google Scholar 

  21. Goudeau P, Badawi KF, Naudon A, Gladyszewski G (1993) Determination of the residual stress tensor in Cu/W multilayers by X-ray diffraction. Appl Phys Lett 62:246

    Article  Google Scholar 

  22. Zhang JY, Wu K, Zhang P et al (2012) An easy way to prepare layered nanoplatelets: fragment of nanostructured multilayers. J Appl Phys 111:113519

    Article  Google Scholar 

  23. Zhang JY, Zhang P, Wang RH, Liu G, Zhang GJ, Sun J (2012) Grain-size-dependent zero-strain mechanism for twinning in copper. Phys Rev B 86:064110

    Article  Google Scholar 

  24. Niu JJ, Zhang JY, Liu G et al (2012) Size-dependent deformation mechanisms and strain-rate sensitivity in nanostructured Cu/X (X = Cr, Zr) multilayer films. Acta Mater 60:3677

    Article  Google Scholar 

  25. Tian Y, Xu B, Yu D et al (2013) Ultrahard nanotwinned cubic boron nitride. Nature 493:385

    Article  Google Scholar 

  26. Zhang JY, Zhang P, Zhang X et al (2012) Mechanical properties of fcc/fcc Cu/Nb nanostructured multilayers. Mater Sci Eng A 545:118

    Article  Google Scholar 

  27. Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 50:23

    Article  Google Scholar 

  28. Niu RM, Liu G, Wang C, Zhang G, Ding XD, Sun J (2007) Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl Phys Lett 90:161907

    Article  Google Scholar 

  29. Zhang JY, Zhang X, Wang RH et al (2011) Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: the constraining effects of the ductile phase on the brittle phase. Acta Mater 59:7368

    Article  Google Scholar 

  30. Zhang J, Xu K, He J (1999) Effects of grain orientation on preferred abnormal grain growth in copper films on silicon substrates. J Mater Sci Lett 18:471

    Article  Google Scholar 

  31. Kim SG, Park YB (2008) Grain boundary segregation, solute drag and abnormal grain growth. Acta Mater 56:3739

    Article  Google Scholar 

  32. Zhang P, Zhang JY, Li J et al (2014) Microstructural evolution, mechanical properties and deformation mechanisms of nanocrystalline Cu thin films alloyed with Zr. Acta Mater 76:221

    Article  Google Scholar 

  33. Chen XH, Lu L, Lu K (2011) Grain size dependence of tensile properties in ultrafine-grained Cu with nanoscale twins. Scripta Mater 64:311

    Article  Google Scholar 

  34. Lu L, Shen Y, Chen X, Qian L, Lu K (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304:422

    Article  Google Scholar 

  35. Jin ZH, Gumbsch P, Ma E et al (2006) The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scripta Mater 54:1163

    Article  Google Scholar 

  36. Hoagland RG, Kurtz RJ, Henager CH Jr (2004) Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater 50:775

    Article  Google Scholar 

  37. Shabib I, Miller RE (2009) Deformation characteristics and stress–strain response of nanotwinned copper via molecular dynamics simulation. Acta Mater 57:4364

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51321003, 51322104, 51201123), the 973 Program of China (Grant No. 2010CB631003), and the 111 Project of China (B06025). GL thanks the support from Fundamental Research Funds for the Central Universities and Tengfei Scholar project. JYZ thanks China Postdoctoral Science Foundation (2012M521765) and Shaanxi Province Postdoctoral Scientific Research Projects for part of financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Liu or J. Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, J.Y., Li, J. et al. Combined effect of texture and nanotwins on mechanical properties of the nanostructured Cu and Cu–Al films prepared by magnetron sputtering. J Mater Sci 50, 1901–1907 (2015). https://doi.org/10.1007/s10853-014-8753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8753-7

Keywords

Navigation