Skip to main content
Log in

Size-complementary effects of PEG diamine 1,1’-disubstituted ferrocene on incorporations of β- and γ-cyclodextrins and syntheses of poly(pseudo)rotaxanes with lower coverages therefrom

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) diamine 1,1’-disubstituted ferrocene was utilized as a size-com-plementary site to synthesize lower coverage pseudopolyrotaxanes (pPRs) from self-assemblies with β- and γ-cyclodextrins (CDs). After end-capping β-CD pPRs using N-(triphenylmethyl)glycine (Trt-Gly-OH), an exact β-CD [3]polyrotaxane (PR) was created. However, an unexpected γ-CD [2]PR and a predictive chain folded stranded γ-CD pPR were identified from end-capped γ-CD pPRs.

Graphic abstract

After end-capping a β-CD pPR self-assembled from β-CDs with amine terminated PEG containing ferrocene as a site-complementary site using Trt-Gly-OH, an exact β-CD [3]PR is invariably created. However, an unexpected γ-CD [2]PR and a predictive chain folded stranded γ-CD pPR are identified from end-capping γ-CD pPRs with Trt-Gly-OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Scheme 3

Similar content being viewed by others

References

  1. Hashidzume, A., Yamaguchi, H., Harada, A.: Cyclodextrin-based rotaxanes: from rotaxanes to polyrotaxanes and further to functional materials. Eur. J. Org. Chem. 2019(21), 3344–3357 (2019)

    Article  CAS  Google Scholar 

  2. Qin, Q., Ma, X., Liao, X., Yang, B.: Scutellarin-graft cationic beta-cyclodextrin-polyrotaxane: synthesis, characterization and DNA condensation. Mater. Sci. Eng. C Mater. Biol. Appl. 71, 1028–1036 (2017)

    Article  CAS  Google Scholar 

  3. Takata, T.: Stimuli-responsive molecular and macromolecular systems controlled by rotaxane molecular switches. Bull. Chem. Soc. Jpn. 92, 409–426 (2019)

    Article  CAS  Google Scholar 

  4. Song, Q., Luo, Z., Tong, X., Du, Y., Huang, Y.: Glutathione as the end capper for cyclodextrin/PEG polyrotaxanes. Chin. J. Polym. Sci. 32, 1003–1009 (2014)

    Article  CAS  Google Scholar 

  5. Du, R., Xu, Z., Zhu, C., Jiang, Y., Yan, H., Wu, H.C., Vardoulis, O., Cai, Y., Zhu, X., Bao, Z., Zhang, Q., Jia, X.: A Highly stretchable and self-healing supramolecular elastomer based on sliding crosslinks and hydrogen bonds. Adv. Funct. Mater. 30, 1907139 (2019)

    Article  Google Scholar 

  6. Choi, S., Kwon, T.W., Coskun, A., Choi, J.W.: Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017)

    Article  CAS  Google Scholar 

  7. Wang, W., Zhao, D., Yang, J., Nishi, T., Ito, K., Zhao, X., Zhang, L.: Novel slide-ring material/natural rubber composites with high damping property. Sci. Rep. 6, 22810 (2018)

    Article  Google Scholar 

  8. Alvarez-Lorenzo, C., Garcia-Gonzalez, C.A., Concheiro, A.: Cyclodextrins as versatile building blocks for regenerative medicine. J. Control Release 268, 269–281 (2017)

    Article  CAS  Google Scholar 

  9. Tamura, A., Yui, N.: Polyrotaxane-based systemic delivery of beta-cyclodextrins for potentiating therapeutic efficacy in a mouse model of Niemann-Pick type C disease. J. Control Release 269, 148–158 (2018)

    Article  CAS  Google Scholar 

  10. Tong, X., Yang, F.: Sliding hydrogels with mobile molecular ligands and crosslinks as 3D stem cell niche. Adv. Mater. 28, 7257–7263 (2016)

    Article  CAS  Google Scholar 

  11. Jiang, L., Liu, C., Mayumi, K., Kato, K., Yokoyama, H., Ito, K.: Highly stretchable and instantly recoverable slide-ring gels consisting of enzymatically synthesized polyrotaxane with low host coverage. Chem. Mater. 30, 5013–5019 (2018)

    Article  CAS  Google Scholar 

  12. Okada, M., Harada, A.: Poly(polyrotaxane): photoreactions of 9-anthracene-capped polyrotaxane. Macromolecules 36, 9701–9703 (2003)

    Article  CAS  Google Scholar 

  13. Sun, H., Han, J., Gao, C.: High yield production of high molecular weight poly(ethylene glycol)/α-cyclodextrin polyrotaxanes by aqueous one-pot approach. Polymer 53, 2884–2889 (2012)

    Article  CAS  Google Scholar 

  14. Okada, M., Harada, A.: Preparation of β-cyclodextrin polyrotaxane: photodime-rization of pseudo-polyrotaxane with 2-anthryl and triphenylmethyl groups at the ends of poly(propylene glycol). Org. Lett. 6, 361–364 (2004)

    Article  CAS  Google Scholar 

  15. Wang, J., Gao, P., Ye, L., Zhang, A.Y., Feng, Z.G.: Solvent- and thermoresponsive polyrotaxanes with β-cyclodextrin dispersed/aggregated structures on a pluronic f127 backbone. J. Phys. Chem. B 14, 5342–5349 (2010)

    Article  Google Scholar 

  16. Huang, K., Li, L., Wang, J., Zhou, Z., Guo, X.: Tunable double-stranded inclusion complexes of γ-cyclodextrin threaded onto non-modified poly(ethylene glycol). Colloid Polym. Sci. 294, 311–319 (2015)

    Article  Google Scholar 

  17. Okada, M., Takashima, Y., Harada, A.: One-pot synthesis of γ-cyclodextrin polyrotaxane trap of γ-cyclodextrin by photodimerization of anthracene-capped pseudo-polyrotaxane. Macromolecules 37, 7075–7077 (2004)

    Article  CAS  Google Scholar 

  18. Kobayashi, Y., Nakamitsu, Y., Zheng, Y., Takashima, Y., Yamaguchic, H., Harada, A.: Control of the threading ratio of cyclic molecules in polyrotaxanes consisting of poly(ethylene glycol) and alpha-cyclodextrins. Chem. Commun. 54, 7066–7069 (2018)

    Article  CAS  Google Scholar 

  19. Wu, J.S., Toda, K., Tanaka, A., Sanemasa, I.: Association constants of ferrocene with cyclodextrins in aqueous medium determined by solubility measurements of ferrocene. Bull. Chem. Soc. Jpn. 71, 1615–1618 (1998)

    Article  CAS  Google Scholar 

  20. Duan, N.N., Lu, H., Ye, L., Zhang, A.Y., Feng, Z.G.: Unexpected polypseudorotaxanes formed from the self-assembly of beta-cyclodextrins with poly( n-isopropylacrylamide) homo- and copolymers. J. Phys. Chem. B 123, 5004–5013 (2019)

    Article  CAS  Google Scholar 

  21. Bozna, B.L., Blass, J., Albrecht, M., Hausen, F., Wenz, G., Bennewitz, R.: Friction mediated by redox-active supramolecular connector molecules. Langmuir 31, 10708–10716 (2015)

    Article  CAS  Google Scholar 

  22. Ma, M., Luan, T., Yang, M., Liu, B., Wang, Y., An, W., Wang, B., Tang, R., Hao, A.: Self-assemblies of cyclodextrin derivatives modified by ferrocene with multiple stimulus responsiveness. Soft Matter 13, 1534–1538 (2017)

    Article  CAS  Google Scholar 

  23. Szillat, F., Schmidt, B.V., Hubert, A., Barner-Kowollik, C., Ritter, H.: Redox-switchable supramolecular graft polymer formation via ferrocene-cyclodextrin assembly. Macromol. Rapid Commun. 35, 1293–1300 (2014)

    Article  CAS  Google Scholar 

  24. Nakahata, M., Takashima, Y., Yamaguchi, H., Harada, A.: Redox-responsive self-healing materials formed from host-guest polymers. Nat. Commun. 2, 511 (2011)

    Article  Google Scholar 

  25. Guo, J., Wang, N., Peng, L., Wu, J., Ye, Q., Feng, A., Wang, Z., Zhang, C., Xing, X.H., Yuan, J.: Electrochemically-responsive magnetic nanoparticles for reversible protein adsorption. J. Mater. Chem. B 4, 4009–4016 (2016)

    Article  CAS  Google Scholar 

  26. Akae, Y., Iijima, K., Tanaka, M., Tarao, T., Takata, T.: Main chain-type poly-rotaxanes derived from cyclodextrin-based pseudo[3]rotaxane diamine and macro-molecular diisocyanate: synthesis, modification, and characterization. Macromolecules 53, 2169–2176 (2020)

    Article  CAS  Google Scholar 

  27. Tamura, A., Nishida, K., Yui, N.: Lysosomal pH-inducible supramolecular dissociation of polyrotaxanes possessing acid-labile N-triphenylmethyl end groups and their therapeutic potential for Niemann-Pick type C disease. Sci. Technol. Adv. Mater. 17, 361–374 (2016)

    Article  CAS  Google Scholar 

  28. Knobloch, F.W., Rauscher, W.H.: Condensation polymers of ferrocene derivatives. J. Polym. Sci. 54, 651–656 (1961)

    Article  CAS  Google Scholar 

  29. Skinner, P.J., Blair, S., Kataky, R., Parker, D.: A rotaxane of a 1,1’-disubstituted ferrocene and β-cyclodextrin. New J. Chem. 24, 265–268 (2000)

    Article  CAS  Google Scholar 

  30. Gao, M., Lu, H., Song, R.H., Ye, L., Zhang, A.Y., Feng, Z.G.: Polyrotaxanes created by end-capping polypseudorotaxanes self-assembled from β-CDs with distal azide terminated PHEMA using propargylamine monosubstituted β-CDs. Polym. Chem. 11, 653–658 (2020)

    Article  CAS  Google Scholar 

  31. You, J., Ye, L., Zhang, A.Y., Feng, Z.G.: Synthesis and characterization of matched double-chain and loose-fit single-chain stranded γ-CD-based polypseudorotaxane containing block copolymers. Acta Polym. Sin. 8, 1320–1330 (2017)

    Google Scholar 

  32. Gao, P., Wang, J., Geng, X., Ye, L., Zhang, A.Y., Feng, Z.G.: A study on properties of PEG bent double chain stranded polypseudorotaxanes with γ-cyclodextrins. Acta Chim. Sin. 71, 341–350 (2013)

    Google Scholar 

Download references

Acknowledgements

We thank for finacial support from the National Natural Science Foundation of China (No. 21774016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-guo Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Rh., Gao, M., Geng, X. et al. Size-complementary effects of PEG diamine 1,1’-disubstituted ferrocene on incorporations of β- and γ-cyclodextrins and syntheses of poly(pseudo)rotaxanes with lower coverages therefrom. J Incl Phenom Macrocycl Chem 102, 99–108 (2022). https://doi.org/10.1007/s10847-021-01104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-021-01104-3

Keywords

Navigation