Skip to main content
Log in

Himalayan bacterial endophytes enhance microalgal cell numbers and chlorophyll content in synthetic co-culture

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Endophytic bacteria associated with medicinal plants from Himalayan mountains possess great biotechnological potential. However, the influence of these Himalayan bacterial endophytes (HBE) on microalgal-promotion and metabolite production is still largely unknown. In this study, the interactions between two endophytic bacterial isolates of an endangered Himalayan medicinal plant and long-chain fatty acids accumulating green alga Micractinium sp. GA001 are characterized in synthetic co-culture systems. The endophytes Staphylococcus pasteuri PPE11 and Yersinia enterocolitica PPE118 significantly enhance microalgal cell numbers with 56% and 49% increase in total chlorophyll content, respectively. Co-culturing microalgae with these endophytes demonstrated distinct responses toward photosynthesis at different temperatures. Endophytes were metabolically active for an extended time (more than 28 days) in co-culturing. The findings were further complemented with genomics studies of endophytes which were subjected to multiple sequencing approaches to assemble and annotate their genomes, resulting in key genes involved in PGP activities, metabolites production and transportation being identified. This study expands the benefits and bioprocessing potential of endophytes of Himalayan medicinal plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Genome sequences of S. pasteuri PPE11 and Y. enterocolitica PPE118 are available in the NCBI GenBank Data Libraries under accession numbers CP088927-CP088929 and JAJNKC000000000, respectively.

References

  • Andres-Barrao C, Lafi FF, Alam I, de Zelicourt A, Eida AA, Bokhari A, Alzubaidy H, Bajic VB, Hirt H, Saad MM (2017) Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium. Front Microbiol 8:2023

    Article  PubMed  PubMed Central  Google Scholar 

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, DvorkinM KAS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker D, Stanke R, Fendrik I, Frommer WB, Vanderleyden J, Kaiser WM, Hedrich R (2002) Expression of the NH4+-transporter gene LEAMT12 is induced in tomato roots upon association with N2 fixing bacteria. Planta 215:424–429

    Article  CAS  PubMed  Google Scholar 

  • Behringer G, Ochsenkuhn MA, Fei C, Fanning J, Koester JA, Amin SA (2018) Bacterial communities of diatoms display strong conservation across strains and time. Front Microbiol 9:659

    Article  PubMed  PubMed Central  Google Scholar 

  • Bigalke A, Meyer N, Papanikolopoulou LA, Wiltshire KH, Pohnert G (2019) The algicidal bacterium Kordia algicida shapes a natural plankton community. Appl Environ Microbiol 85:e02779–e02718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinform 30:2114–2120

    Article  CAS  Google Scholar 

  • Bradford MM (1976) a rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry V, Patil PB (2016) Genomic investigation reveals evolutiona and lifestyle adaptation of endophytic Staphylococcus epidermidis. Sci Rep 6:19263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chen PE, Cook C, Stewart AC, Nagarajan N, Sommer DD, Pop M, Thomason B, Thomason MPK, Lentz S, Nolan N, Sozhamannan S (2010) Genomic characterization of the Yersinia genus. Genome Biol 11:1–18

    Article  CAS  Google Scholar 

  • Chen J, Wei D, Pohnert G (2017) Rapid estimation of astaxanthin and the carotenoid-to-chlorophyll ratio in the green microalga Chromochloris zofingiensis using flow cytometry. Mar Drugs 15:231

    Article  PubMed Central  Google Scholar 

  • Cirri E, Pohnert G (2019) Algae-bacteria interactions that balance the planktonic microbiome. New Phytol 223:100–106

    Article  PubMed  Google Scholar 

  • Collins T, Margesin R (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 103:2857–2871

    Article  CAS  PubMed  Google Scholar 

  • Cuiv PO, Keogh D, Clarke P, Connell MO (2008) The hmuUV genes of Sinorhizobium meliloti 2011 encode the permease and ATPas components of an ABC transport system for the utilization of both haem and the hydroxamate siderophores, ferrichorme and ferrioxamine B. Mol Microbiol 70:1261–1273

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Article  CAS  PubMed  Google Scholar 

  • Deka D, Marwein R, Chikkaputtaiah C, Kaki SS, Azmeera T, Boruah HPD, Velmurugan N (2020) Strain improvement of long-chain fatty acids producing Micractinium sp. by flow cytometry. Process Biochem 96:90–101

    Article  CAS  Google Scholar 

  • Dhakar K, Pandey A (2020) Microbial ecology from the himalayan cryosphere perspective. Microorganisms 8:257

    Article  PubMed Central  Google Scholar 

  • Eren AM, Murat Kiefl E, Shaiber A, Veseli I, Miller SE, Schechter MS, Fink I, Pan JN, Yousef M, Fogarty EC, Trigodet F, Watson AR, Esen OC, Moore RM, Clayssen Q, Lee MD, Kivenson V, Graham ED, Merrill BD, Karkman A, Blankenberg D, Eppley JM, Sjodin A, Scott JJ, Vazquez-Campos X, McKay LJ, McDaniel EA, Stevens SLR, Anderson RK, Fuessel J, Fernandz-Guerra A, Maignien L, Delmont TO, Willis AD (2021) Community-led, integrated, reproducible multi-omics with Anvi’o. Nat Microbiol 6:3–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu SF, Wei JY, Chen HW, Liu YY, Lu HY, Chou JY (2015) Indole-3-acetic acid: A widespread physiological code interactions of fungi with other organisms. Plant Signal Behav 10:e1048052

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert S, Xu J, Acosta K, Poulev A, Lebeis S, Lam E (2018) Bacterial production of indole related compounds reveals their role in association between duckweeds and endophytes. Front Chem 6:265

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon SA, Weber RP (1951) Colorimetric estimation of indoleacetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haag H, Fiedler HP, Meiwes J, Drechsel H, Jung G, Zahner H (1994) Isolation and biological characterization of staphyloferrin B, a compound with siderophore activity from Staphylococci. FEMS Microbiol Lett 115:125–130

    Article  CAS  PubMed  Google Scholar 

  • Han J, Zhang L, Wang S, Yang G, Zhao L, Pan K (2016) Co-culturing bacteria and microalgae in organic carbon containing medium. J Biol Res-Thessaloniki 23:1–9

    Article  Google Scholar 

  • Hariskos I, Rubner T, Posten C (2015) Investigation of cell growth and chlorophyll a content of the coccoithophorid alga Emiliania huxleyi by using simple bench-top flow cytometry. J Bioprocess Biotech 5:234

    Google Scholar 

  • Jain R, Bhardwaj P, Pandey SS, Kumar S (2021) Arnebia euchroma, a plant species of cold desert in the Himalayas, harbors beneficial cultivable endophytes in roots and leaves. Front Microbiol 12:696667

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansson M (1988) Phosphate uptake and utilization by bacteria and algae. Hydrobiologia 170:177–189

    Article  CAS  Google Scholar 

  • Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris

    Google Scholar 

  • Kanda N, Abe F (2013) Structural and functional implications of the yeast high-affinity tryptophan permease Tat2. Biochem 52:4296–4307

    Article  CAS  Google Scholar 

  • Kapatral V, Campbell JW, Minnich SA, Thomson NR, Matsumura P, Prub BM (2004) Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degrdation of carbomylophosphate. Microbiology 150:2289–2300

    Article  CAS  PubMed  Google Scholar 

  • Khare E, Mishra J, Arora NK (2018) Multifaceted interactions between endophytes and plant: developments and prospects. Front Microbiol 9:2732

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Yun HS, Kim YS, Kim JG (2020) Effects of co-culture on imporved productivity and bioresource for microalgal biomass using the floc-forming bacteria Melaminivora jejuensis. Front Bioeng Biotechnol 8:588210

    Article  PubMed  PubMed Central  Google Scholar 

  • Kühl M, Glud RN, Ploug H, Ramsing NB (1996) Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J Phycol 32:799–812

    Article  Google Scholar 

  • Li Y, Zhang Z, Duan Y, Wang H (2019) The effect of recycling culture medium after harvesting of Chlorella vulgaris biomass by flocculating bacteria on microalgal growth and the functionary mechanism. Bioresour Technol 280:188–198

    Article  CAS  PubMed  Google Scholar 

  • Lian J, Schimmel P, Sanchez-Garcia S, Wijffels RH, Smidt H, Sipkema D (2021) Different co-occurring bacteria enhance or decrease the growth of the microalga Nannochloropsis sp. CCAP211/78. Microb Biotechnol 14:1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin H, Li Y, Hill RT (2021) Microalgal and bacterial auxin biosynthesis: implications for algal biotechnology. Curr Opin Biotechnol 73:300–307

    Article  PubMed  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Martin JF, Liras P (2021) Molecular mechanisms of phosphate sensing, transport and signalling in Streptomyces and related actinobacteria. Int J Mol Sci 22:1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin N, Bernat T, Dinasquet J, Stofko A, Damon A, Deheyn DD, Azam F, Smith JE, Davey MP, Smith AG, Vignolini S, Wangpraseurt D (2021) Synthetic algal-bacteria consortia for space-efficient microalgal growth in a simple hydrogel system. J Appl Phycol 33:2805–2815

    Article  CAS  Google Scholar 

  • Miles AA, Misra SS, Irwin JO (1938) The estimation of the bactericidal power of the blood. J Hyg (Lond) 38:732–749

    CAS  Google Scholar 

  • Pacifico D, Squartini A, Crucitti D, Barizza E, Lo Schiavo F, Muresu R, Carimi F, Zottini M (2019) The role of the endophytic microbiome in the grapevine response to environmental triggers. Front Plant Sci 10:1256

    Article  PubMed  PubMed Central  Google Scholar 

  • Pagnussat LA, Maroniche G, Curatti L, Creus C (2020) Auxin-dependent alleviation of oxidative stress and growth promotion of Scenedesmus obliquus C1S by Azospirillum brasilense. Algal Res 47:101839

    Article  Google Scholar 

  • Papageorgiou GC, Tsimilli-Michael M, Stamatakis K (2007) The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. Photosynth Res 94:275–290

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Mei S, Yuan Y, Li X, Tang T, Zhao Q, Wu M, Wei W, Sun Y (2018) Enhancing fermentation wastewater treatment by co-culture of microalgae with volatile fatty acid- and alcohol-degrading bacteria. Algal Res 31:31–39

    Article  Google Scholar 

  • Rai N, Kumar V, Sharma M, Akhter Y (2021) Auxin transport mechanism of membrane transporter encoded by AEC gene of Bacillus licheniformis isolated from metagenome of Tapta Kund hotspring of Uttrakhand, India. Int J Biol Macromol 185:277–286

    Article  CAS  PubMed  Google Scholar 

  • Rajapitamahuni S, Bachani P, Sardar RK, Mishra S (2019) Co-cultivation of siderophore-producing baceria Idiomarina loihiensis RS14 with Chlorella variabilis ATCC 12198, evaluation of micro-algal growth, lipid, and protein content under iron starvation. J Appl Phycol 31:29–39

    Article  CAS  Google Scholar 

  • Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34:14–29

    Article  CAS  PubMed  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav A, Yadav AN (2021) Bioprospecting of endophytic bacteria from the Indian Himalayas and their role in plant growth promotion of maize (Zea mays L.). J Appl Biol Biotechnol 9:41–50

    CAS  Google Scholar 

  • Sandhya SV, Vijayan KK (2019) Symbiotic association among marine microalgae and bacterial flora: a study with special reference to commercially important Isochrysis galbana culture. J Appl Phycol 31:2259–2266

    Article  CAS  Google Scholar 

  • Schubert S, Fischer D, Heesemann J (1999) Ferric enterochelin transport in Yersinia enterocolitica: Molecular and evolutonary aspects. J Bacteriol 181:6387–6395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, Barteneva N, Paulson JN, Chai L, Clardy J, Kolter R (2016) Dynamic metabolic exchange governs a marine algal-bacterial interaction. elife 5:17473

    Article  Google Scholar 

  • Shi G, Su M, Liang J, Duan R, Gu W, Xiao Y, Zhang Z, Qiu H, Zhang Z, Li Y, Zhang X, Ling Y, Song L, Chen M, Zhao Y, Wu J, Jing H, Xiao J, Wang X (2016) Complete genome sequence and comparative genome analysis of a new special Yersinia enterocolitica. Arch Microbiol 198:673–687

    Article  CAS  PubMed  Google Scholar 

  • Sonowal S, Ahmed R, Chikkaputtaiah C, Basar E, Velmurugan N (2022) A comprehensive characterization of culturable endophytic bacteria of Paris polyphylla and their potential role in microalgal growth in co-culture. Appl Soil Ecol 174:104410

    Article  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    Article  CAS  PubMed  Google Scholar 

  • Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, Sandstrom JP, Moran NA, Andersson SG (2002) 50 million years of genomic stasis in endosymbiotic bacteria. Science 296:2376–2379

    Article  CAS  PubMed  Google Scholar 

  • Tejido-Nunez Y, Aymerich E, Sancho L, Refardt D (2020) Co-cultivation of microalgae in aquaculture water: Interactions, growth and nutrient removal efficiency at laboratory- and pilot scale. Algal Res 49:101940

    Article  Google Scholar 

  • Tettelin H, Masignani V, Cleslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Jurkin AS, DeBoy RT, Davidsen TM, Mora M, Scarselli M, Ros IMY, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RN, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJB, Smith Sh, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome.” Proc Natl Acad Sci U S A 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson NR, Howard S, Wren BW, Holden MTG, Crossman L, Challis GL, Churcher C, Mungall K, Brooks K, Chillingworth T, Feltwell T, Abdellah Z, Hauser H, Jagels K, Maddison M, Moule S, Sanders M, Whitehaead S, Quail MA, Dougan G, Parkhill J, Prentice MB (2006) The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2:e206

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Dommelen A, Van Bastelaere E, Keijers V, Vanderleyden J (1997) Genetics of Azospirillum brasilense with respect to ammonium transport, sugar uptake, and chemotaxis. Plant Soil 194:155–160

    Article  Google Scholar 

  • Vuong TT, Kwon B-R, Eom J-I, Shin B-K, Kim SM (2020) Interaction between marine bacterium Stappia sp. K01 and diatom Phaeodactylum tricornutum through extracellular fatty acids. J Appl Phycol 32:71–82

    Article  CAS  Google Scholar 

  • Zhang F, Ye Q, Chen Q, Yang K, Zhang D, Chen Z, Lu S, Shao X, Fan Y, Yao L, Ke L, Zheng T, Xu H (2018) Algicidal activity of novel marine bacterium Paracoccus sp. strain Y42 against a harmful algal-bloom-causing dinoflagellate, Prorocentrum donghaiense. Appl Environ Microbiol 84:e01015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Director, CSIR-NEIST, Jorhat, Assam for his kind encouragement in carrying out this work.

Funding

This work was supported by research funds of Project Code MLP-0048 by Council of Scientific and Industrial Research (CSIR), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

NV conceived the idea and designed and supervised the experiments. SS, NPP, RA, and NV performed the experiments. SS, NPP, RA, JD, CC, EB and N.V. analysed the data and wrote the article. All authors read and approved the manuscript.

Corresponding author

Correspondence to Natarajan Velmurugan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1068 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonowal, S., Palani, N.P., Ahmed, R. et al. Himalayan bacterial endophytes enhance microalgal cell numbers and chlorophyll content in synthetic co-culture. J Appl Phycol 34, 2383–2400 (2022). https://doi.org/10.1007/s10811-022-02798-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02798-9

Keywords

Navigation