Skip to main content
Log in

Calcium carbonate prevents Botryococcus braunii growth inhibition caused by medium acidification

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microalgae, Botryococcus braunii in particular, have received increasing interest owing to their potential as biofuel sources. Although the fertilizer components present in wastewater are useful in reducing the cost of commercial production of microalgae, the ammonium nitrogen (NH4+-N) acidifies the medium and may inhibit the growth of B. braunii. In this study, we aimed to investigate the effectiveness of calcium carbonate in preventing the growth inhibition of B. braunii by suppressing pH decrease caused by NH4+-N. Four types of modified Chu13 media were prepared: a control, one with NH4+-N, one with calcium carbonate, and one with calcium carbonate and NH4+-N. Then, the pH, NH4+-N concentration, B. braunii growth, and hydrocarbon content were measured. We found that in the NH4+-N treatment without calcium carbonate, the pH decreased to approximately 4, and there was almost no algal growth even after 20 days. In contrast, there were no differences in the growth rate and medium pH (7–8) between the treatment with calcium carbonate and the control medium. In addition, calcium ions were leached into the medium with calcium carbonate as the culture progressed, confirming the effectiveness of calcium carbonate in maintaining a constant pH and thus preventing growth inhibition. As such, the addition of calcium carbonate effectively prevents B. braunii growth inhibition by suppressing pH decrease and is more cost-effective than aggressive pH adjustment with alkali or acid or by adding buffer solutions into the medium. This simple and inexpensive method can be used for the removal of ammonia from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The data during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • An J, Sim S, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185–191

    Article  CAS  Google Scholar 

  • Atobe S, Saga K, Hasegawa F, Furuhashi K, Tashiro Y, Suzuki T, Okada S, Imou K (2015a) Effect of amphiphilic polysaccharides released from Botryococcus braunii Showa on hydrocarbon recovery. Algal Res 10:172–176

    Article  Google Scholar 

  • Atobe S, Saga K, Hasegawa F, Magota A, Furuhashi K, Okada S, Suzuki T, Imou K (2015b) The effect of the water-soluble polymer released from Botryococcus braunii Showa strain on solvent extraction of hydrocarbon. J Appl Phycol 27:755–761

    Article  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2006) Futile cycling at the plasma membrane: a hallmark of low-affinity nutrient transport. Trends Plant Sci 11:529–534

    Article  CAS  Google Scholar 

  • Cheng P, Okada S, Zhou C, Chen P, Huo S, Li K, Addy M, Yan X, Ruan RR (2019) High-value chemicals from Botryococcus braunii and their current applications – a review. Bioresour Technol 291:121911

    Article  CAS  Google Scholar 

  • Coskun D, Britto DT, Li M, Becker A, Kronzucker HJ (2013) Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. Plant Physiol 163:1859–1867

    Article  CAS  Google Scholar 

  • Eroglu E, Okada S, Melis A (2011) Hydrocarbon productivities in different Botryococcus strains: comparative methods in product quantification. J Appl Phycol 23:763–775

    Article  CAS  Google Scholar 

  • Furuhashi K, Hasegawa F, Saga K, Kudou S, Okada S, Kaizu Y, Imou K (2016a) Effects of culture medium salinity on the hydrocarbon extractability, growth and morphology of Botryococcus braunii. Biomass Bioenergy 91:83–90

    Article  CAS  Google Scholar 

  • Furuhashi K, Noguchi T, Okada S, Hasegawa F, Kaizu Y, Imou K (2016b) The surface structure of Botryococcus braunii colony prevents the entry of extraction solvents into the colony interior. Algal Res 16:160–166

    Article  Google Scholar 

  • Griehl C, Kleinert C, Griehl C, Bieler S (2015) Design of a continuous milking bioreactor for non-destructive hydrocarbon extraction from Botryococcus braunii. J Appl Phycol 27:1833–1843

    Article  CAS  Google Scholar 

  • Hillen LW, Pollard G, Wake LV, White N (1982) Hydrocracking of the oils of Botryococcus braunii to transport fuels. Biotechnol Bioeng 24:193–205

    Article  CAS  Google Scholar 

  • Huang Z, Dale Poulter C (1989) Tetramethylsqualene, a triterpene from Botryococcus braunii var. Showa. Phytochemistry 28:1467–1470

    Article  CAS  Google Scholar 

  • Kawachi M, Tanoi T, Demura M, Kunimitsu K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119

    Article  Google Scholar 

  • Kim YJ, Chan YL, Ke HL (1992) Nitrogen assimilation of hydrocarbon producing algae, Botryococcus braunii UTEX-572. J Microbiol Biotechnol 2:255–259

  • Kronzucker HJ, Britto DT, Davenport RJ, Tester M (2001) Ammonium toxicity and the real cost of transport. Trends Plant Sci 6:335–337

    Article  CAS  Google Scholar 

  • Lupi FM, Fernandes HML, Tomé MM, Sá-Correia I, Novais JM (1994) Influence of nitrogen source and photoperiod on exopolysaccharide synthesis by the microalga Botryococcus braunii UC 58. Enzyme Microb Technol 16:546–550

    Article  CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, Cambridge

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266

    Article  CAS  Google Scholar 

  • Metzger P, Berkaloff C, Casadevall E, Coute A (1985) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  Google Scholar 

  • Moheimani NR, Matsuura H, Watanabe MM, Borowitzka MA (2014) Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J Appl Phycol 26:1453–1463

    Article  CAS  Google Scholar 

  • Nakamura H, Shiozaki T, Gonda N, Furuya K, Matsunaga S, Okada S (2017) Utilization of ammonium by the hydrocarbon-producing microalga, Botryococcus braunii Showa. Algal Res 25:445–451

    Article  Google Scholar 

  • Niehaus TD, Kinison S, Okada S, Yeo Y, Bell SA, Cui P, Devarenne TP, Chappell J (2012) Functional identification of triterpene methyltransferases from Botryococcus braunii race B. J Biol Chem 287:8163–8173

    Article  CAS  Google Scholar 

  • Niehaus TD, Okada S, Devarenne TP, Watt DS, Sviripa V, Chappell J (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. Proc Natl Acad Sci U S A 108:12260–12265

    Article  CAS  Google Scholar 

  • Nonomura AM (1988) Botryococcus braunii var. Showa (Chlorophyceae) from Berkeley, California, United States of America. Jpn J Phycol 36:285–291

    Google Scholar 

  • Ohmori M, Wolf FR, Bassham JA (1984) Botryococcus braunii carbon/nitrogen metabolism as affected by ammonia addition. Arch Microbiol 140:101–106

    Article  CAS  Google Scholar 

  • Okada S, Murakami M, Yamaguchi K (1995) Hydrocarbon composition of newly isolated strains of the green microalga Botryococcus braunii. J Appl Phycol 7:555–559

    Article  CAS  Google Scholar 

  • Órpez R, Martínez ME, Hodaifa G, Yousfi FE, Jbari N, Sánchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246:625–630

    Article  Google Scholar 

  • Raven JA, Giordano M (2016) Combined nitrogen. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Cham, pp 143–154

    Chapter  Google Scholar 

  • Sawayama S, Minowa T, Dote Y, Yokoyama S (1992) Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 38:135–138

  • Schubert S, Yan F (1997) Nitrate and ammonium nutrition of plants: effects on acid/base balance and adaptation of root cell plasmalemma H+ ATPase. Z Pflanzenernaehr Bodenk 160:275–281

    Article  CAS  Google Scholar 

  • Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, Smith AG, Camire ME, Brawley SH (2017) Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol 29:949–982

    Article  CAS  Google Scholar 

  • Yoshimura T, Okada S, Honda M (2013) Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: optimal CO2, salinity, temperature, and irradiance conditions. Bioresour Technol 133:232–239

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to Professor Shigeru Okada of the University of Tokyo for providing technical support and Botryococcus braunii cultures.

Funding

This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI) (Grant Number JP 19K15939).

Author information

Authors and Affiliations

Authors

Contributions

R.M., K.F., F.H., Y.K., and K.I. designed research; K.F., F.H., Y.K., and K.I. conducted review and editing; K.F. and K.I. provided funding acquisition, project administration, and resources; R.M., and K.F. wrote the paper.

Corresponding author

Correspondence to Kenichi Furuhashi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miura, R., Furuhashi, K., Hasegawa, F. et al. Calcium carbonate prevents Botryococcus braunii growth inhibition caused by medium acidification. J Appl Phycol 34, 177–183 (2022). https://doi.org/10.1007/s10811-021-02622-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02622-w

Keywords

Navigation