Skip to main content
Log in

Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for the advanced sodium-ion batteries

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The alloy-type anodes such as P and Sn with high specific capacities are the rising stars for developing advanced sodium-ion batteries (SIBs). However, the low initial coulombic efficiency (ICE) due to the solid electrolyte interphase (SEI) formation and the large volume variation during sodiation/desodiation cycling still limit their practical application. This study reports a facile chemical presodiation method for P and Sn anodes using the sodium biphenyl/tetrahydrofuran (Na-Bp/THF) solution as the presodiation reagent. With a low redox potential of 0.095 V vs. Na/Na+, the Na-Bp/THF reagent is capable of preinserting Na+ into these anodes and compensating for the initial capacity loss. Through adjusting the treatment duration, the degree of presodiation could be feasibly controlled, and the initial CE of a P/C electrode could be significantly increased from 64 to 94%. Surface morphology characterization reveals a more robust NaF-rich SEI layer formed on the presodiated P/C electrode after cycling, which helps to preserve the integrity of the P/C electrode and enables a better cycling performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goikolea E, Palomares V, Wang S, de Larramendi IR, Guo X, Wang G, Rojo T (2020) Na-ion batteries—approaching old and new challenges. Adv Energy Mater 10:2002055. https://doi.org/10.1002/aenm.202002055

    Article  CAS  Google Scholar 

  2. Hwang J-Y, Myung S-T, Sun Y-K (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614. https://doi.org/10.1039/C6CS00776G

    Article  CAS  PubMed  Google Scholar 

  3. Chayambuka K, Mulder G, Danilov DL, Notten PHL (2020) From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. Adv Energy Mater 10:2001310. https://doi.org/10.1002/aenm.202001310

    Article  CAS  Google Scholar 

  4. Tan H, Chen D, Rui X, Yu Y (2019) Peering into alloy anodes for sodium-ion batteries: current trends, challenges, and opportunities. Adv Funct Mater 29:1808745. https://doi.org/10.1002/adfm.201808745

    Article  CAS  Google Scholar 

  5. Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240. https://doi.org/10.1021/acs.accounts.5b00482

    Article  CAS  PubMed  Google Scholar 

  6. Dewar D, Glushenkov AM (2021) Optimisation of sodium-based energy storage cells using pre-sodiation: a perspective on the emerging field. Energy Environ Sci 14:1380–1401. https://doi.org/10.1039/D0EE02782K

    Article  CAS  Google Scholar 

  7. Song Z, Zou K, Xiao X, Deng X, Li S, Hou H, Lou X, Zou G, Ji X (2021) Presodiation strategies for the promotion of sodium-based energy storage systems. Chem Eur J 27:16082–16092. https://doi.org/10.1002/chem.202102433

    Article  CAS  PubMed  Google Scholar 

  8. Ding F, Meng Q, Yu P, Wang H, Niu Y, Li Y, Yang Y, Rong X, Liu X, Lu Y, Chen L, Hu Y-S (2021) Additive-free self-presodiation strategy for high-performance Na-ion batteries. Adv Funct Mater 31:2101475. https://doi.org/10.1002/adfm.202101475

    Article  CAS  Google Scholar 

  9. Niu Y-B, Guo Y-J, Yin Y-X, Zhang S-Y, Wang T, Wang P, Xin S, Guo Y-G (2020) High-efficiency cathode sodium compensation for sodium-ion batteries. Adv Mater 32:2001419. https://doi.org/10.1002/adma.202001419

    Article  CAS  Google Scholar 

  10. Zhang B, Dugas R, Rousse G, Rozier P, Abakumov AM, Tarascon J-M (2016) Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat Commun 7:10308. https://doi.org/10.1038/ncomms10308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qian J, Wu X, Cao Y, Ai X, Yang H (2013) High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew Chem Int Ed 52:4633–4636. https://doi.org/10.1002/anie.201209689

    Article  CAS  Google Scholar 

  12. Zhou J, Ye W, Lian X, Shi Q, Liu Y, Yang X, Liu L, Wang D, Choi J-H, Sun J, Yang R, Wang M-S, Rummeli MH (2022) Advanced red phosphorus/carbon composites with practical application potential for sodium ion batteries. Energy Storage Mater 46:20–28. https://doi.org/10.1016/j.ensm.2021.12.042

    Article  CAS  Google Scholar 

  13. Yan J, Li H, Wang K, Jin Q, Lai C, Wang R, Cao S, Han J, Zhang Z, Su J, Jiang K (2021) Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode. Adv Energy Mater 11:2003911. https://doi.org/10.1002/aenm.202003911

    Article  CAS  Google Scholar 

  14. Fang Y, Yu X-Y, Lou XW (2019) Nanostructured electrode materials for advanced sodium-ion batteries. Matter 1:90–114. https://doi.org/10.1016/j.matt.2019.05.007

    Article  Google Scholar 

  15. Zou K, Deng W, Cai P, Deng X, Wang B, Liu C, Li J, Hou H, Zou G, Ji X (2021) Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives. Adv Funct Mater 31:2005581. https://doi.org/10.1002/adfm.202005581

    Article  CAS  Google Scholar 

  16. Zhang T, Wang R, He B, Jin J, Gong Y, Wang H (2021) Recent advances on pre-sodiation in sodium-ion capacitors: a mini review. Electrochem Commun 129:107090. https://doi.org/10.1016/j.elecom.2021.107090

    Article  CAS  Google Scholar 

  17. Zhan R, Wang X, Chen Z, Seh ZW, Wang L, Sun Y (2021) Promises and challenges of the practical implementation of prelithiation in lithium-ion batteries. Adv Energy Mater 11:2101565. https://doi.org/10.1002/aenm.202101565

    Article  CAS  Google Scholar 

  18. Li F, Cao Y, Wu W, Wang G, Qu D (2022) Prelithiation bridges the gap for developing next-generation lithium-ion batteries/capacitors. Small Methods 6:2200411. https://doi.org/10.1002/smtd.202200411

    Article  CAS  Google Scholar 

  19. Liu W, Chen X, Zhang C, Xu H, Sun X, Zheng Y, Yu Y, Li S, Huang Y, Li J (2019) Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na. ACS Appl Mater Interfaces 11:23207–23212. https://doi.org/10.1021/acsami.9b05005

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Tan Y, Liu T, Wang W, Li C, Lu J, Sun Y (2019) A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries. Adv Funct Mater 29:1903795. https://doi.org/10.1002/adfm.201903795

    Article  CAS  Google Scholar 

  21. Liu M, Yang Z, Shen Y, Guo S, Zhang J, Ai X, Yang H, Qian J (2021) Chemically presodiated Sb with a fluoride-rich interphase as a cycle-stable anode for high-energy sodium ion batteries. J Mater Chem A 9:5639–5647. https://doi.org/10.1039/D0TA10880D

    Article  CAS  Google Scholar 

  22. Wang G, Li F, Liu D, Zheng D, Luo Y, Qu D, Ding T, Qu D (2019) Chemical prelithiation of negative electrodes in ambient air for advanced lithium-ion batteries. ACS Appl Mater Interfaces 11:8699–8703. https://doi.org/10.1021/acsami.8b19416

    Article  CAS  PubMed  Google Scholar 

  23. Li F, Wang G, Zheng D, Zhang X, Abegglen CJ, Qu H, Qu D (2020) Controlled prelithiation of SnO2/C nanocomposite anodes for building full lithium-ion batteries. ACS Appl Mater Interfaces 12:19423–19430. https://doi.org/10.1021/acsami.0c00729

    Article  CAS  PubMed  Google Scholar 

  24. Wang G, Li F, Liu D, Zheng D, Abeggien CJ, Luo Y, Yang X-Q, Ding T, Qu D (2020) High performance lithium-ion and lithium–sulfur batteries using prelithiated phosphorus/carbon composite anode. Energy Storage Mater 24:147–152. https://doi.org/10.1016/j.ensm.2019.08.025

    Article  Google Scholar 

  25. Wang G, Huang B, Liu D, Zheng D, Harris J, Xue J, Qu D (2018) Exploring polycyclic aromatic hydrocarbons as an anolyte for nonaqueous redox flow batteries. J Mater Chem A 6:13286–13293. https://doi.org/10.1039/C8TA03221A

    Article  CAS  Google Scholar 

  26. Tan J, Matz J, Dong P, Shen J, Ye M (2021) A growing appreciation for the role of LiF in the solid electrolyte interphase. Adv Energy Mater 11:2100046. https://doi.org/10.1002/aenm.202100046

    Article  CAS  Google Scholar 

  27. Chen J, Fan X, Li Q, Yang H, Khoshi MR, Xu Y, Hwang S, Chen L, Ji X, Yang C, He H, Wang C, Garfunkel E, Su D, Borodin O, Wang C (2020) Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat Energy 5:386–397. https://doi.org/10.1038/s41560-020-0601-1

    Article  CAS  Google Scholar 

  28. Ye M, You S, Xiong J, Yang Y, Zhang Y, Li CC (2022) In-situ construction of a NaF-rich cathode–electrolyte interface on Prussian blue toward a 3000-cycle-life sodium-ion battery. Mater Today Energy 23:100898. https://doi.org/10.1016/j.mtener.2021.100898

    Article  CAS  Google Scholar 

  29. Moeez I, Jung H-G, Lim H-D, Chung KY (2019) Presodiation strategies and their effect on electrode–electrolyte interphases for high-performance electrodes for sodium-ion batteries. ACS Appl Mater Interfaces 11:41394–41401. https://doi.org/10.1021/acsami.9b14381

    Article  CAS  PubMed  Google Scholar 

  30. Liu D, Huang X, Qu D, Zheng D, Wang G, Harris J, Si J, Ding T, Chen J, Qu D (2018) Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 52:1–10. https://doi.org/10.1016/j.nanoen.2018.07.023

    Article  CAS  Google Scholar 

  31. Liu M, Zhang J, Guo S, Wang B, Shen Y, Ai X, Yang H, Qian J (2020) Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries. ACS Appl Mater Interfaces 12:17620–17627. https://doi.org/10.1021/acsami.0c02230

    Article  CAS  PubMed  Google Scholar 

  32. Wang E, Niu Y, Yin Y-X, Guo Y-G (2021) Manipulating electrode/electrolyte interphases of sodium-ion batteries: strategies and perspectives. ACS Mater Lett 3:18–41. https://doi.org/10.1021/acsmaterialslett.0c00356

    Article  CAS  Google Scholar 

  33. Self EC, Delnick FM, Ruther RE, Allu S, Nanda J (2019) High-capacity organic radical mediated phosphorus anode for sodium-based redox flow batteries. ACS Energy Lett 4:2593–2600. https://doi.org/10.1021/acsenergylett.9b01744

    Article  CAS  Google Scholar 

  34. Zhou X, Lai Y, Wu X, Chen Z, Zhong F, Ai X, Yang H, Cao Y (2021) Improved initial charging capacity of Na-poor Na0.44MnO2 via chemical presodiation strategy for low-cost sodium-ion batteries. Chem Res Chin Univ 37:274–279. https://doi.org/10.1007/s40242-021-0438-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors from Wuhan Institute of Technology thank the Start-up Project of Wuhan Institute of Technology (20QD28) and the National Natural Science Foundation of China (grant nos. 52203279) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2020 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yu, X., Tang, K. et al. Chemical presodiation of alloy anodes with improved initial coulombic efficiencies for the advanced sodium-ion batteries. J Appl Electrochem 53, 9–18 (2023). https://doi.org/10.1007/s10800-022-01754-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-022-01754-2

Keywords

Navigation