Skip to main content

Advertisement

Log in

Interpenetrating polymeric network (IPNs) in ophthalmic drug delivery: Breaking the barriers

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

To maintain the therapeutic drug concentration for a prolonged period of time in aqueous and vitreous humor is primary challenge for ophthalmic drug delivery. Majority of the locally administered drug into the eye is lost as to natural reflexes like blinking and lacrimation resulting in the short span of drug residence. Consequently, less than 5% of the applied drug penetrate through the cornea and reaches the intraocular tissues. The major targets for optimal ophthalmic drug delivery are increasing drug residence time in cul-de-sac of the eye, prolonging intraocular exposure, modulating drug release from the delivery system, and minimizing pre-corneal drug loss. Development of in situ gel, contact lens, intraocular lens, inserts, artificial cornea, scaffold, etc., for ophthalmic drug delivery are few approaches to achieve these major targeted objectives for delivering the drug optimally. Interpenetrating polymeric network (IPN) or smart hydrogels or stimuli sensitive hydrogels are the class of polymers that can help to achieve the targets in ophthalmic drug delivery due to their versatility, biocompatibility and biodegradability. These novel ‘‘smart” materials can alter their molecular configuration and result in volume phase transition in response to environmental stimuli, such as temperature, pH, ionic strength, electric and magnetic field. Hydrogel and tissue interaction, mechanical/tensile properties, pore size and surface chemistry of IPNs can also be modulated for tuning the drug release kinetics. Stimuli sensitive IPNs has been widely exploited to prepare in situ gelling formulations for ophthalmic drug delivery. Low refractive index hydrogel biomaterials with high water content, soft tissue-like physical properties, wettability, oxygen, glucose permeability and desired biocompatibility makes IPNs versatile candidate for contact lenses and corneal implants. This review article focuses on the exploration of these smart polymeric networks/IPNs for therapeutically improved ophthalmic drug delivery that has unfastened novel arenas in ophthalmic drug delivery.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Li Q et al (2021) Safety assessment of polymeric micelles as an ophthalmic drug delivery system for intravitreal administration of dasatinib. Int J Pharm 596:120226

    Article  CAS  PubMed  Google Scholar 

  2. Noreen S et al (2020) Terminalia arjuna gum/alginate in situ gel system with prolonged retention time for ophthalmic drug delivery. Int J Biol Macromol 152:1056–1067

    Article  PubMed  Google Scholar 

  3. Chen M-S et al (2008) Blood-ocular barriers. Tzu Chi Med J 20(1):25–34

    Article  Google Scholar 

  4. Ferreira JA et al (2014) Numerical simulation of aqueous humor flow: From healthy to pathologic situations. Appl Math Comput 226:777–792

    Google Scholar 

  5. Baig MS et al (2020) Development and evaluation of cationic nanostructured lipid carriers for ophthalmic drug delivery of besifloxacin. J Drug Deliv Sci Technol 55:101496

    Article  CAS  Google Scholar 

  6. Chan KC et al (2008) GD-DTPA enhanced MRI of ocular transport in a rat model of chronic glaucoma. Exp Eye Res 87(4):334–341

    Article  CAS  PubMed  Google Scholar 

  7. Umapathy A et al (2018) Functional characterisation of glutathione export from the rat lens. Exp Eye Res 166:151–159

    Article  CAS  PubMed  Google Scholar 

  8. Cholkar K et al (2013) Eye: anatomy, physiology and barriers to drug delivery. In: Ocular transporters and receptors. Elsevier, pp 1–36

  9. Upadhyay M et al (2020) Oxidative stress in the retina and retinal pigment epithelium (RPE): role of aging, and DJ-1. Redox Biol 37:101623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chu Z et al (2022) Optical coherence tomography measurements of the retinal pigment epithelium to bruch membrane thickness around geographic atrophy correlate with growth. Am J Ophthalmol 236:249–260

    Article  PubMed  Google Scholar 

  11. Khodamoradi M et al (2021) An electro-conductive hybrid scaffold as an artificial Bruch’s membrane. Mater Sci Eng C Mater Biol Appl 126:112180

    Article  CAS  PubMed  Google Scholar 

  12. Lin MC, Svitova TF (2021) Effects of model tear proteins and topical ophthalmic formulations on evaporation inhibition and biophysical property of model tear lipid nanofilm in vitro. JCIS Open 4:100028

    Article  Google Scholar 

  13. Račić A et al (2019) Development of polysaccharide-based mucoadhesive ophthalmic lubricating vehicles: the effect of different polymers on physicochemical properties and functionality. J Drug Deliv Sci Technol 49:50–57

    Article  Google Scholar 

  14. Silvani L et al (2020) Arabinogalactan and hyaluronic acid in ophthalmic solution: experimental effect on xanthine oxidoreductase complex as key player in ocular inflammation (in vitro study). Exp Eye Res 196:108058

    Article  CAS  PubMed  Google Scholar 

  15. Wu X-G et al (2011) The biological characteristics and pharmacodynamics of a mycophenolate mofetil nanosuspension ophthalmic delivery system in rabbits. J Pharm Sci 100(4):1350–1361

    Article  CAS  PubMed  Google Scholar 

  16. Al-Ghabeish M et al (2015) Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment. Int J Pharm 495(2):783–791

    Article  CAS  PubMed  Google Scholar 

  17. Dave V et al (2020) Folic acid modified gold nanoparticle for targeted delivery of Sorafenib tosylate towards the treatment of diabetic retinopathy. Colloids Surf B Biointerfaces 194:111151

    Article  CAS  PubMed  Google Scholar 

  18. Lu GJ et al (2020) Genetically encodable contrast agents for optical coherence tomography. ACS Nano 14(7):7823–7831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moustafa MA et al (2018) Gel in core carbosomes as novel ophthalmic vehicles with enhanced corneal permeation and residence. Int J Pharm 546(1–2):166–175

    Article  CAS  PubMed  Google Scholar 

  20. Garg V et al (2022) Topical tacrolimus progylcosomes nano-vesicles as a potential therapy for experimental dry eye syndrome. J Pharm Sci 111(2):479–484

    Article  PubMed  Google Scholar 

  21. Elmotasem H, Awad GEA (2020) A stepwise optimization strategy to formulate in situ gelling formulations comprising fluconazole-hydroxypropyl-beta-cyclodextrin complex loaded niosomal vesicles and Eudragit nanoparticles for enhanced antifungal activity and prolonged ocular delivery. Asian J Pharm Sci 15(5):617–636

    Article  PubMed  Google Scholar 

  22. Hassan N et al (2021) Doe guided chitosan based nano-ophthalmic preparation against fungal keratitis. Mater Today Proc 41:19–29

    Article  CAS  Google Scholar 

  23. Wu B et al (2022) Flurbiprofen loaded thermosensitive nanohydrogel for ophthalmic anti-inflammatory therapy. J Drug Deliv Sci Technol 70:103253

    Article  CAS  Google Scholar 

  24. Gudnason K, Sigurdsson S, Jonsdottir FJMB (2021) Multi-region finite element modelling of drug release from hydrogel based ophthalmic lenses. Math Biosci 331:108497

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J et al (2022) Antifouling and antibacterial zwitterionic hydrogels as soft contact lens against ocular bacterial infections. Eur Polym J 167:111037

    Article  CAS  Google Scholar 

  26. Xue Y et al (2022) Extended ocular delivery of latanoprost from niosome-laden contact lenses: In vitro characterization and in vivo studies. J Drug Deliv Sci Technol 68:103044

    Article  CAS  Google Scholar 

  27. Kim YJ, Min JJI (2021) Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly (vinyl alcohol). Int J Biol Macromol 193:1068–1077

    Article  CAS  PubMed  Google Scholar 

  28. Liu L, Sheardown HJB (2005) Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Biomaterials 26(3):233–244

    Article  CAS  PubMed  Google Scholar 

  29. Yang M-C, Tran-Nguyen PLJC, Biointerfaces SB (2021) Evaluation of silicone hydrogel contact lenses based on poly (dimethylsiloxane) dialkanol and hydrophilic polymers. Colloids Surf B 206:111957

    Article  Google Scholar 

  30. Chen F et al (2020) Simultaneous interpenetrating polymer network of collagen and hyaluronic acid as an in situ-forming corneal defect filler. Chem Mater 32(12):5208–5216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feng L et al (2021) Thermo-gelling dendronized chitosans as biomimetic scaffolds for corneal tissue engineering. ACS Appl Mater Interfaces 13(41):49369–49379

    Article  CAS  PubMed  Google Scholar 

  32. Li J, Stachowski M, Zhang Z (2015) Application of responsive polymers in implantable medical devices and biosensors. Switch Respon Surf Mater Biomed Appl 15:259–298

    Google Scholar 

  33. Shivashankar M, Mandal BK (2012) A review on interpenetrating polymer network. Int J Phram Phram Sci 4(5):1–7

    CAS  Google Scholar 

  34. Lohani A et al (2014) Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014:528

    Article  Google Scholar 

  35. Pal K, Paulson AT, Rousseau D (2009) Biopolymers in controlled-release delivery systems. In: Modern biopolymer science. Elsevier, pp 519–557

  36. Wu B et al (2021) Cell penetrating peptide TAT-functionalized liposomes for efficient ophthalmic delivery of flurbiprofen: penetration and its underlying mechanism, retention, anti-inflammation and biocompatibility. Int J Pharm 598:120405

    Article  CAS  PubMed  Google Scholar 

  37. Sun X et al (2022) Mucoadhesive phenylboronic acid conjugated chitosan oligosaccharide-vitamin E copolymer for topical ocular delivery of voriconazole: synthesis, in vitro/vivo evaluation, and mechanism. Acta Biomater 138:193–207

    Article  CAS  PubMed  Google Scholar 

  38. Sweeney C et al (2022) Impact of mucoadhesive agent inclusion on the intraocular pressure lowering profile of Δ9-tetrahydrocannabinol-valine-hemisuccinate loaded nanoemulsions in New Zealand white rabbits. Int J Pharm 616:121564

    Article  CAS  PubMed  Google Scholar 

  39. Chetoni P et al (1998) Silicone rubber/hydrogel composite ophthalmic inserts: preparation and preliminary in vitro/in vivo evaluation. Eur J Pharm Biopharm 46(1):125–132

    Article  CAS  PubMed  Google Scholar 

  40. Yanez F et al (2008) Macromolecule release and smoothness of semi-interpenetrating PVP–pHEMA networks for comfortable soft contact lenses. Eur J Pharm Biopharm 69(3):1094–1103

    Article  CAS  PubMed  Google Scholar 

  41. Kushwaha SK, Saxena P, Rai A (2012) Stimuli sensitive hydrogels for ophthalmic drug delivery: a review. Int J Pharm Investig 2(2):54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hasnain MS, Nayak AK (2018) Chitosan as responsive polymer for drug delivery applications. Stimuli responsive polymeric nanocarriers for drug delivery applications, vol 1. Elsevier, pp 581–605

    Chapter  Google Scholar 

  43. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Article  CAS  PubMed  Google Scholar 

  44. Wu W, Wang D-S (2010) A fast pH-responsive IPN hydrogel: Synthesis and controlled drug delivery. React Funct Polym 70(9):684–691

    Article  CAS  Google Scholar 

  45. Wang W, Wang A (2010) Synthesis and swelling properties of pH-sensitive semi-IPN superabsorbent hydrogels based on sodium alginate-g-poly (sodium acrylate) and polyvinylpyrrolidone. Carbohyd Polym 80(4):1028–1036

    Article  CAS  Google Scholar 

  46. Lim LS et al (2017) Synthesis and swelling behavior of pH-sensitive semi-IPN superabsorbent hydrogels based on poly (acrylic acid) reinforced with cellulose nanocrystals. Nanomaterials 7(11):399

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mohamadnia Z et al (2007) pH-sensitive IPN hydrogel beads of carrageenan-alginate for controlled drug delivery. J Bioact Compat Polym 22(3):342–356

    Article  CAS  Google Scholar 

  48. Kim SJ et al (2003) Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid–poly (vinyl alcohol) interpenetrating polymer networks. React Funct Polym 55(3):291–298

    Article  CAS  Google Scholar 

  49. Kozhunova EY, Vyshivannaya OV, Nasimova IR (2019) “Smart” IPN microgels with different network structures: self-crosslinked vs conventionally crosslinked. Polymer 176:127–134

    Article  CAS  Google Scholar 

  50. Morimoto N, Yamamoto MJL (2021) Design of an LCST–UCST-like thermoresponsive zwitterionic copolymer. Langmuir 37(11):3261–3269

    Article  CAS  PubMed  Google Scholar 

  51. Fu X, Xing C, Sun JJB (2020) Tunable LCST/UCST-type polypeptoids and their structure-property relationship. Biomacromol 21(12):4980–4988

    Article  CAS  Google Scholar 

  52. Wałach W et al (2021) Alternative to poly (2-isopropyl-2-oxazoline) with a reduced ability to crystallize and physiological LCST. Int J Mol Sci 22(4):2221

    Article  PubMed  PubMed Central  Google Scholar 

  53. d’Oliveira H et al (2017) Test-area surface tension calculation of the graphene-methane interface: fluctuations and commensurability. J Chem Phys 146(21):214112

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu R et al (2022) Preparation of LCST regulable DES-lignin-g-PNVCL thermo-responsive polymer by ARGET-ATRP. Int J Biol Macromol 194:358–365

    Article  CAS  PubMed  Google Scholar 

  55. Xie B et al (2015) An injectable thermosensitive polymeric hydrogel for sustained release of Avastin® to treat posterior segment disease. Int J Pharm 490(1–2):375–383

    Article  CAS  PubMed  Google Scholar 

  56. Cao Y et al (2007) Poly (N-isopropylacrylamide)–chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release 120(3):186–194

    Article  CAS  PubMed  Google Scholar 

  57. Jung SW et al (2018) Multivalent ion-based in situ gelling polysaccharide hydrogel as an injectable bone graft. Carbohyd Polym 180:216–225

    Article  CAS  Google Scholar 

  58. Tsuru T, Sugimura K, Nishio YJ (2017) Superparamagnetic IPN gels of carrageenan/PHEMA excelling in shape retention. Carbohyd Polym 178:1–7

    Article  CAS  Google Scholar 

  59. Wang W-B et al (2013) One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf B Biointerfaces 106:51–59

    Article  CAS  PubMed  Google Scholar 

  60. Jana S et al (2015) Metal ion-induced alginate–locust bean gum IPN microspheres for sustained oral delivery of aceclofenac. Int J Biol Macromol 72:47–53

    Article  CAS  PubMed  Google Scholar 

  61. Zeng L et al (2020) Anion exchange membrane based on interpenetrating polymer network with ultrahigh ion conductivity and excellent stability for alkaline fuel cell. Research 2020:5248

    Article  Google Scholar 

  62. Singha NR et al (2017) Synthesis of guar gum-g-(acrylic acid-co-acrylamide-co-3-acrylamido propanoic acid) IPN via in situ attachment of acrylamido propanoic acid for analyzing superadsorption mechanism of Pb (II)/Cd (II)/Cu (II)/MB/MV. Polym Chem 8(44):6750–6777

    Article  CAS  Google Scholar 

  63. Loghin DFA et al (2017) Preparation and characterization of oxidized starch/poly (N, N-dimethylaminoethyl methacrylate) semi-IPN cryogels and in vitro controlled release evaluation of indomethacin. Int J Biol Macromol 96:589–599

    Article  Google Scholar 

  64. Hu X et al (2015) Mechanically tough biomacromolecular IPN hydrogel fibers by enzymatic and ionic crosslinking. Int J Biol Macromol 72:403–409

    Article  CAS  PubMed  Google Scholar 

  65. Paulsson M, Hägerström H, Edsman K (1999) Rheological studies of the gelation of deacetylated gellan gum (Gelrite®) in physiological conditions. Eur J Pharm Sci 9(1):99–105

    Article  CAS  PubMed  Google Scholar 

  66. Shelley H et al (2018) In situ gel formulation for enhanced ocular delivery of nepafenac. J Pharm Sci 107(12):3089–3097

    Article  CAS  PubMed  Google Scholar 

  67. Krtalić I et al (2018) D-optimal design in the development of rheologically improved in situ forming ophthalmic gel. J Pharm Sci 107(6):1562–1571

    Article  PubMed  Google Scholar 

  68. Fang G et al (2021) Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. Mater Sci Eng C 127:112212

    Article  CAS  Google Scholar 

  69. Elbahwy IA et al (2018) Mucoadhesive self-emulsifying delivery systems for ocular administration of econazole. Int J Pharm 541(1–2):72–80

    Article  CAS  PubMed  Google Scholar 

  70. Del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today 13(3–4):135–143

    PubMed  Google Scholar 

  71. Rafie F et al (2010) In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res 35(12):1081–1089

    Article  CAS  PubMed  Google Scholar 

  72. Choi SW, Kim J (2018) Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review. Materials 11(7):1125

    Article  PubMed  PubMed Central  Google Scholar 

  73. Awwad S et al (2019) In situ antibody-loaded hydrogel for intravitreal delivery. Eur J Pharm Sci 137:104993

    Article  CAS  PubMed  Google Scholar 

  74. Al-Kinani AA et al (2018) Ophthalmic gels: past, present and future. Adv Drug Deliv Rev 126:113–126

    Article  CAS  PubMed  Google Scholar 

  75. del Amo EM et al (2015) Intravitreal clearance and volume of distribution of compounds in rabbits: in silico prediction and pharmacokinetic simulations for drug development. Eur J Pharm Biopharm 95:215–226

    Article  PubMed  Google Scholar 

  76. Hou Y et al (2019) Ultra-small micelles based on polyoxyl 15 hydroxystearate for ocular delivery of myricetin: optimization, in vitro, and in vivo evaluation. Drug Deliv 26(1):158–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Myung D et al (2009) Bioactive interpenetrating polymer network hydrogels that support corneal epithelial wound healing. J Biomed Mater Res A 90(1):70–81

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rodriguez-Tenreiro C et al (2007) Cyclodextrin/carbopol micro-scale interpenetrating networks (ms-IPNs) for drug delivery. J Control Release 123(1):56–66

    Article  CAS  PubMed  Google Scholar 

  79. Agrawal AK, Das M, Jain S (2012) In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv 9(4):383–402

    Article  CAS  PubMed  Google Scholar 

  80. Lin H-R, Sung K, Vong W-J (2004) In situ gelling of alginate/pluronic solutions for ophthalmic delivery of pilocarpine. Biomacromol 5(6):2358–2365

    Article  CAS  Google Scholar 

  81. Egbu R et al (2018) Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur J Pharm Biopharm

  82. Jiang L et al (2019) Scaffold hopping-driven optimization of 4-(quinazolin-4-yl)-3, 4-dihydroquinoxalin-2 (1 H)-ones as novel tubulin inhibitors. ACS Med Chem Lett 11(1):83–89

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bhardwaj V, Harit G, Kumar S (2012) Interpenetrating polymer network (IPN): novel approach in drug delivery. Int J Drug Dev Res 4(3):41–54

    CAS  Google Scholar 

  84. Myung D et al (2008) Development of hydrogel-based keratoprostheses: a materials perspective. Biotechnol Prog 24(3):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Elkhouly H, Mamdouh W, El-Korashy DIJ (2021) Electrospun nano-fibrous bilayer scaffold prepared from polycaprolactone/gelatin and bioactive glass for bone tissue engineering. J Mater Sci Mater Med 32(9):1–15

    Article  Google Scholar 

  86. Wendland RJ et al (2021) The effect of retinal scaffold modulus on performance during surgical handling. Exp Eye Res 207:108566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sharma R et al (2019) Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 11(475):eaat5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Weiss MD et al (2006) Sleep hygiene and melatonin treatment for children and adolescents with ADHD and initial insomnia. J Am Acad Child Adolesc Psychiatry 45(5):512–519

    Article  PubMed  Google Scholar 

  89. Albon J (2003) Corneal transplantation and the artificial cornea. J Mech Med Biol 3(01):95–106

    Article  Google Scholar 

  90. Al-Ani A et al (2021) Scaffold-free retinal pigment epithelium microtissues exhibit increased release of PEDF. Int J Mol Sci 22(21):11317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Polisetti N et al (2021) A decellularized human corneal scaffold for anterior corneal surface reconstruction. Sci Rep 11(1):1–15

    Article  Google Scholar 

  92. Soleimannejad M et al (2018) Fibrin gel as a scaffold for photoreceptor cells differentiation from conjunctiva mesenchymal stem cells in retina tissue engineering. Artif Cells Nanomed Biotechnol 46(4):805–814

    Article  CAS  PubMed  Google Scholar 

  93. Hotaling NA et al (2016) Nanofiber scaffold-based tissue-engineered retinal pigment epithelium to treat degenerative eye diseases. J Ocul Pharmacol Ther 32(5):272–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Brunette I et al (2017) Alternatives to eye bank native tissue for corneal stromal replacement. Prog Retin Eye Res 59:97–130

    Article  PubMed  Google Scholar 

  95. Chung C-W et al (2011) Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture. Colloids Surf B Biointerfaces 88(2):711–716

    Article  CAS  PubMed  Google Scholar 

  96. Griffith M et al. Biomimetic corneal substitutes for transplantation: from benchtop to bedside

  97. Liu W et al (2009) Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials 30(8):1551–1559

    Article  CAS  PubMed  Google Scholar 

  98. Hartmann L et al (2011) Toward the development of an artificial cornea: improved stability of interpenetrating polymer networks. J Biomed Mater Res B Appl Biomater 98(1):8–17

    Article  PubMed  Google Scholar 

  99. Deng C et al (2010) Collagen and glycopolymer based hydrogel for potential corneal application. Acta Biomater 6(1):187–194

    Article  CAS  PubMed  Google Scholar 

  100. Chirila TV et al (1998) Hydrophilic sponges based on 2-hydroxyethyl methacrylate. VI. Effect of phase sequence inversion on the characteristics of IPN between sponges and homogeneous gels. J Mater Sci Mater Med 40(1–2):97–104

    CAS  Google Scholar 

  101. Hicks CR et al (1996) Keratoprosthesis: preliminary results of an artificial corneal button as a full-thickness implant in the rabbit model. Aust N Z J Ophthalmol 24(3):297–303

    Article  CAS  PubMed  Google Scholar 

  102. Myung D et al (2008) Glucose-permeable interpenetrating polymer network hydrogels for corneal implant applications: a pilot study. Curr Eye Res 33(1):29–43

    Article  CAS  PubMed  Google Scholar 

  103. Zhang Q et al (2012) High refractive index inorganic–organic interpenetrating polymer network (IPN) hydrogel nanocomposite toward artificial cornea implants. ACS Macro Lett 1(7):876–881

    Article  CAS  PubMed  Google Scholar 

  104. Parke-Houben R et al (2015) Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery. J Mater Sci Mater Med 26(2):1–12

    Article  CAS  Google Scholar 

  105. Liu J, Wang XJAP (2022) Ofloxacin-loaded niosome-laden contact lens: improved properties of biomaterial for ocular drug delivery. AAPS PharmSciTech 23(1):1–9

    Google Scholar 

  106. Ding X et al (2020) Soft contact lens with embedded microtubes for sustained and self-adaptive drug delivery for glaucoma treatment. ACS Appl Mater Interfaces 12(41):45789–45795

    Article  CAS  PubMed  Google Scholar 

  107. Wei Y et al (2020) Design of circular-ring film embedded contact lens for improved compatibility and sustained ocular drug delivery. Eur J Pharm Biopharm 157:28–37

    Article  CAS  PubMed  Google Scholar 

  108. Zhu Q et al (2018) Inner layer-embedded contact lenses for ion-triggered controlled drug delivery. Mater Sci Eng C Mater Biol Appl 93:36–48

    Article  CAS  PubMed  Google Scholar 

  109. Zhu Q et al (2018) Inner layer-embedded contact lenses for pH-triggered controlled ocular drug delivery. Eur J Pharm Biopharm 128:220–229

    Article  CAS  PubMed  Google Scholar 

  110. Pimenta AF et al (2016) Diffusion-based design of multi-layered ophthalmic lenses for controlled drug release. PLoS ONE 11(12):e0167728

    Article  PubMed  PubMed Central  Google Scholar 

  111. Xu J et al (2014) Simultaneous interpenetrating silicone hydrogel based on radical/addition polymerization for extended release of ocular therapeutics. J Biomater Sci Polym Ed 25(2):121–135

    Article  CAS  PubMed  Google Scholar 

  112. Karlgard C et al (2003) In vitro uptake and release studies of ocular pharmaceutical agents by silicon-containing and p-HEMA hydrogel contact lens materials. Int J Pharm 257(1–2):141–151

    Article  CAS  PubMed  Google Scholar 

  113. Zheng Y, Zheng SJR, Polymers F (2012) Poly (ethylene oxide)-grafted poly (N-isopropylacrylamide) networks: preparation, characterization and rapid deswelling and reswelling behavior of hydrogels. React Funct Polym 72(3):176–184

    Article  CAS  Google Scholar 

  114. Shimizu T et al (2010) Super-hydrophilic silicone hydrogels with interpenetrating poly (2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials 31(12):3274–3280

    Article  CAS  PubMed  Google Scholar 

  115. McElroy DM et al (2014) The effect of photoinitiator concentration on the physicochemical properties of hydrogel contact lenses. Appl Mech Mater

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SR: Writing original draft, reviewing and editing.

Corresponding author

Correspondence to Sachin Rathod.

Ethics declarations

Conflict of interest

None.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, S. Interpenetrating polymeric network (IPNs) in ophthalmic drug delivery: Breaking the barriers. Int Ophthalmol 43, 1063–1074 (2023). https://doi.org/10.1007/s10792-022-02482-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02482-4

Keywords

Navigation