Skip to main content

Advertisement

Log in

Beneficial role of kaempferol and its derivatives from different plant sources on respiratory diseases in experimental models

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Respiratory illnesses impose a significant health burden and cause deaths worldwide. Despite many advanced strategies to improve patient outcomes, they are often less effective. There is still considerable room for improvement in the treatment of various respiratory diseases. In recent years, alternative medicinal agents derived from food plants have shown better beneficial effects against a wide variety of disease models, including cancer. In this regard, kaempferol (KMF) and its derivatives are the most commonly found dietary flavonols. They have been found to exhibit protective effects on multiple chronic diseases like diabetes, fibrosis, and so on. A few recent articles have reviewed the pharmacological actions of KMF in cancer, central nervous system diseases, and chronic inflammatory diseases. However, there is no comprehensive review that exists regarding the beneficial effects of KMF and its derivatives on both malignant- and non-malignant respiratory diseases. Many experimental studies reveal that KMF and its derivatives are helpful in managing a wide range of respiratory diseases, including acute lung injury, fibrosis, asthma, cancer, and chronic obstructive pulmonary disease, and their underlying molecular mechanisms. In addition, we also discussed the chemistry and sources, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, methods to enhance bioavailability, as well as our perspective on future research with KMF and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References

  • Alvarez AI, Real R, Pérez M, Mendoza G, Prieto JG, Merino G (2010) Modulation of the activity of ABC transporters (p-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci 99(2):598–617

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Ahmad S, Irshad R, Goyal Y, Rafat S, Siddiqui N, Dev K, Husain M, Ali S, Mohan A, Syed MA (2019) TLRs in pulmonary diseases. Life Sci 233:116671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bade BC, Cruz CSD (2020) Lung Cancer 2020: epidemiology, etiology, and prevention. Clin Chest Med 41(1):1–24

    Article  PubMed  Google Scholar 

  • Barrington R, Williamson G, Bennett RN, Davis BD, Brodbelt JS, Kroon PA (2009) Absorption, conjugation and efflux of the flavonoids, kaempferol and galangin, using the intestinal CaCo-2/TC7 cell model. J Funct Foods 1(1):74–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barve A, Chen C, Hebbar V, Desiderio J, Saw CLL, Kong AN (2009) Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm Drug Dispos 30(7):356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonetti A, Marotti I, Dinelli G (2007) Urinary excretion of kaempferol from common beans (Phaseolus vulgaris L.) in humans. Int J Food Sci Nutr 58(4):261–269

    Article  CAS  PubMed  Google Scholar 

  • Brown M, Strudwick N, Suwara M, Sutcliffe LK, Mihai AD, Ali AA, Watson JN, Schröder M (2016) An initial phase of JNK activation inhibits cell death early in the endoplasmic reticulum stress response. J Cell Sci 129(12):2317–2328

    CAS  PubMed  Google Scholar 

  • Brown ES, Bice C, Putnam WC, Leff R, Kulikova A, Nakamura A, Ivleva EI, Enkevort EV, Holmes T, Miingi N (2019) Human safety and pharmacokinetics study of orally administered icariin: randomized, double-blind, placebo-controlled trial. Nat Prod Commun 14(6):1934578X19856789

    CAS  Google Scholar 

  • Bush A (2019) Pathophysiological mechanisms of asthma. Front Pediatr 7:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Camelo A, Dunmore R, Sleeman M, Clarke D (2014) The epithelium in idiopathic pulmonary fibrosis: breaking the barrier. Front Pharmacol 4:173

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao M, Fan B, Zhen T, Wang J (2021) A pre-clinical trial study on afzelin: anti-human lung cancer, anti-cholinesterase, and anti-glucosidase properties. Arch Med Sci. https://doi.org/10.5114/aoms/136283

    Article  PubMed  PubMed Central  Google Scholar 

  • Cazzola M, Rogliani P, Stolz D, Matera MG (2019) Pharmacological treatment and current controversies in COPD. F1000 Faculty Rev 8:1533

    Article  CAS  Google Scholar 

  • Chai D, Zhang L, Xi S, Cheng Y, Jiang H, Hu R (2018) Nrf2 activation induced by Sirt1 ameliorates acute lung injury after intestinal ischemia/reperfusion through NOX4-mediated gene regulation. Cell Physiol Biochem 46(2):781–792

    Article  CAS  PubMed  Google Scholar 

  • Chalmers F, van Lith M, Sweeney B, Cain K, Bulleid NJ (2017) Inhibition of IRE1α-mediated XBP1 mRNA cleavage by XBP1 reveals a novel regulatory process during the unfolded protein response. Wellcome Open Res 2:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Sun J, Chen H, Xiao Y, Liu D, Chen J, Cai H, Cai B (2010) Comparative pharmacokinetics and bioavailability studies of quercetin, kaempferol and isorhamnetin after oral administration of Ginkgo biloba extracts, Ginkgo biloba extract phospholipid complexes and Ginkgo biloba extract solid dispersions in rats. Fitoterapia 81(8):1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang J, Jia X, Tan X, Hu M (2011) Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yinyanghuo. Molecules 16(2):1336–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Xiong YQ, Xu J, Wang JP, Meng ZL, Hong YQ (2017a) Juglanin inhibits lung cancer by regulation of apoptosis, ROS and autophagy induction. Oncotarget 8(55):93878–93898

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen M, Cai F, Zha D, Wang X, Zhang W, He Y, Huang Q, Zhuang H, Hua ZC (2017b) Astragalin-induced cell death is caspase-dependent and enhances the susceptibility of lung cancer cells to tumor necrosis factor by inhibiting the NF-κB pathway. Oncotarget 8(16):26941–26958

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Sheng T, Yi Y, Zhang T, Han H (2016) Metabolism profiles of icariin in rats using ultra-high performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and in vitro enzymatic study. J Chromatogr B 1033–1034:353–360

    Article  Google Scholar 

  • Cho HY, Reddy SP, Kleeberger SR (2006) Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal 8(1–2):76–87

    Article  CAS  PubMed  Google Scholar 

  • Cho IH, Gong JH, Kang MK, Lee EJ, Park JHY, Park SJ, Kang YH (2014) Astragalin inhibits airway eotaxin-1 induction and epithelial apoptosis through modulating oxidative stress-responsive MAPK signaling. BMC Pulm Med 14:122

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho IH, Choi YJ, Gong JH, Shin D, Kang MK, Kang YH (2015) Astragalin inhibits autophagy-associated airway epithelial fibrosis. Respir Res 16(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung MJ, Pandey RP, Choi JW, Sohng JK, Choi DJ, Park YI (2015) Inhibitory effects of kaempferol-3-O-rhamnoside on ovalbumin-induced lung inflammation in a mouse model of allergic asthma. Int Immunopharmacol 25(2):302–310

    Article  CAS  PubMed  Google Scholar 

  • Dabeek WM, Marra MV (2019) Dietary quercetin and kaempferol: bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11(10):2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425(6958):577–584

    Article  CAS  PubMed  Google Scholar 

  • Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, Daglia M (2015) Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res 99:1–10

    Article  CAS  PubMed  Google Scholar 

  • Dong ZW, Yuan YF (2018) Juglanin suppresses fibrosis and inflammation response caused by LPS in acute lung injury. Int J Mol Med 41(6):3353–3365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du W, Tang Z, Yang F, Liu X, Dong J (2021) Icariin attenuates bleomycin-induced pulmonary fibrosis by targeting Hippo/YAP pathway. Biomed Pharmacother 143:112152

    Article  CAS  PubMed  Google Scholar 

  • DuPont MS, Day AJ, Bennett RN, Mellon FA, Kroon PA (2004) Absorption of kaempferol from endive, a source of kaempferol-3-glucuronide, in humans. Eur J Clin Nutr 58(6):947–954

    Article  CAS  PubMed  Google Scholar 

  • Eguchi H, Matsunaga T, Endo S, Ichihara K, Ikari A (2020) Kaempferide enhances chemosensitivity of human lung adenocarcinoma A549 cells mediated by the decrease in phosphorylation of Akt and claudin-2 expression. Nutrients 12(4):1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA (2019) The effects of polyphenols and other bioactives on human health. Food Fun 10(2):514–528

    Article  CAS  Google Scholar 

  • Gandhi D, Bhandari S, Mishra S, Tiwari RR, Rajasekaran S (2022a) Non-malignant respiratory illness associated with exposure to arsenic compounds in the environment. Environ Toxicol Pharmacol 94:103922

    Article  CAS  PubMed  Google Scholar 

  • Gandhi D, Rudrashetti AP, Rajasekaran S (2022b) The impact of environmental and occupational exposures of manganese on pulmonary, hepatic, and renal functions. J Appl Toxicol 42(1):103–129

    Article  CAS  PubMed  Google Scholar 

  • Garde-Cerdán T, Gonzalo-Diagoa A, Garde-Cerdán T, Gonzalo-Diagoa A (2016) Kaempferol: Biosynthesis, food sources and therapeutic uses. Nova Science Publisher’s

    Google Scholar 

  • Gong JH, Shin D, Han SY, Kim JL, Kang YH (2012) Kaempferol suppresses eosionphil infiltration and airway inflammation in airway epithelial cells and in mice with allergic asthma. J Nutr 142(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Gong JH, Shin D, Han SY, Park SH, Kang MK, Kang YH, Kim JL (2013) Blockade of airway inflammation by kaempferol via disturbing Tyk-STAT signaling in airway epithelial cells and in asthmatic mice. Evid Based Complement Alternat Med 2013:e250725

    Article  Google Scholar 

  • Gong JH, Cho IH, Shin D, Han SY, Park SH, Kang YH (2014) Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice. Lab Invest 94(3):297–308

    Article  CAS  PubMed  Google Scholar 

  • Govindaraju S, Roshini A, Lee MH, Yun K (2019) Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. Int J Nanomed 14:5147–5157

    Article  CAS  Google Scholar 

  • Griffiths MJD, McAuley DF, Perkins GD, Barrett N, Blackwood B, Boyle A, Chee N, Connolly B, Dark P, Finney S, Salam A, Silversides J, Tarmey N, Wise MP, Baudouin SV (2019) Guidelines on the management of acute respiratory distress syndrome. BMJ Open Res Res 6(1):e000420

    Article  Google Scholar 

  • Han LY, Wu YL, Zhu CY, Wu CS, Yang CR (2019) Improved pharmacokinetics of icariin (ICA) within formulation of PEG-PLLA/PDLA-PNIPAM polymeric micelles. Pharmaceutics 11(2):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hang M, Zhao F, Chen SB, Sun Q, Zhang CX (2015) Kaempferol modulates the metastasis of human non-small cell lung cancer cells by inhibiting epithelial-mesenchymal transition. Bangladesh J Pharmacol 10(2):267–270

    Article  Google Scholar 

  • Heuberger DM, Schuepbach RA (2019) Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thrombosis J 17:4

    Article  Google Scholar 

  • Hothersall E, McSharry C, Thomson NC (2006) Potential therapeutic role for statins in respiratory disease. Thorax 61(8):729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou J, Wang J, Sun E, Yang L, Yan HM, Jia XB, Zhang ZH (2016) Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers. Drug Deliv 23(9):3248–3256

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Li L, Zhang H, Li Q, Jiang S, Qiu J, Sun J, Dong J (2019) Inhibition of airway remodeling and inflammatory response by Icariin in asthma. BMC Complement Altern Med 19:316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Liu F, Li L, Zhang L, Yan C, Li Q, Qiu J, Dong J, Sun J, Zhang H (2020) Effects of icariin on cell injury and glucocorticoid resistance in BEAS-2B cells exposed to cigarette smoke extract. Exp Ther Med 20(1):283–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JJ, Blobe GC (2016) Dichotomous roles of TGF-β in human cancer. Biochem Soc Trans 44(5):1441–1454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang YY, Ho YS (2018) Nutraceutical support for respiratory diseases. Food Sci Hum Wellness 7(3):205–208

    Article  Google Scholar 

  • Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou PV, Umair Arshad M, Khan H, Guerreiro SG, Martins N, Estevinho LM (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24(12):2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin X, Zhang Z, Sun E, Tan X, Zhu F, Li S, Jia X (2012) Preparation of icariside II-phospholipid complex and its absorption across Caco-2 cell monolayers. Pharmazie 67(4):293–298

    CAS  PubMed  Google Scholar 

  • Jo E, Park SJ, Choi YS, Jeon WK, Kim BC (2015) Kaempferol suppresses transforming growth factor-β1–induced epithelial-to-mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1-mediated phosphorylation of Smad3 at Threonine-179. Neoplasia 17(7):525–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ER, Matthay MA (2010) Acute lung injury: epidemiology, apthogenesis, and treatment. J Aerosol Med Pulm Drug Deliv 23(4):243–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HY, Kim OH, Sung MK (2003) Effects of phenol-depleted and phenol-rich diets on blood markers of oxidative stress, and urinary excretion of quercetin and kaempferol in healthy volunteers. J Am Coll Nutr 22(3):217–223

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kwon SB, Kim MS, Jin SW, Ryu HW, Oh SR, Yoon DY (2016) Trifolin induces apoptosis via extrinsic and intrinsic pathways in the NCI-H460 human non-small cell lung-cancer cell line. Phytomedicine 23(10):998–1004

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Choi YJ, Kang MK, Park SH, Antika LD, Lee EJ, Kim DY, Kang YH (2017) Astragalin inhibits allergic inflammation and airway thickening in ovalbumin-challenged mice. J Agric Food Chem 65(4):836–845

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Lee HJ, Lee CJ (2019) Growth factor- and phorbol ester-induced production and gene expression of MUC5AC mucin in human airway epithelial NCI-H292 cells were inhibited by Afzelin and natural products derived from Houttuynia Cordata. Nat Prod Sci 25(3):248

    Article  CAS  Google Scholar 

  • Kim YH, Kang MK, Lee EJ, Kim DY, Oh H, Kim SI, Oh SY, Na W, Shim JH, Kang IJ, Kang YH (2021) Astragalin inhibits cigarette smoke-induced pulmonary thrombosis and alveolar inflammation and disrupts PAR activation and oxidative stress-responsive MAPK-signaling. Int J Mol Sci 22(7):3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimoto H, Fujiwara S, Koyama N, Uesugi T (2022) Genotoxicity and subchronic toxicity of a kaempferol aglycone-rich product produced from horseradish leaves. Fundam Toxicol Sci 9(3):71–83

    Article  CAS  Google Scholar 

  • Krusinska B, Hawrysz I, Wadolowska L, Slowinska MA, Biernacki M, Czerwinska A, Golota JJ (2018) Associations of Mediterranean diet and a posteriori derived dietary patterns with breast and lung cancer risk: a case-control study. Nutrients 10(4):470

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar ADN, Bevara GB, Kaja LK, Badana AK, Malla RR (2016) Protective effect of 3-O-methyl quercetin and kaempferol from Semecarpus anacardium against H2O2 induced cytotoxicity in lung and liver cells. BMC Complement Altern Med 16(1):376

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo WT, Tsai YC, Wu HC, Ho YJ, Chen YS, Yao C-H, Yao C-H (2015) Radiosensitization of non-small cell lung cancer by kaempferol. Oncol Rep 34(5):2351–2356

    Article  CAS  PubMed  Google Scholar 

  • Kwatra D, Venugopal A, Anant S (2013) Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res 2(4):330–342

    CAS  Google Scholar 

  • Lau AN, Goodwin M, Kim CF, Weiss DJ (2012) Stem cells and regenerative medicine in lung biology and diseases. Mol Ther 20(6):1116–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leal LKAM, Costa MF, Pitombeira M, Barroso VM, Silveira ER, Canuto KM, Viana GSB (2006) Mechanisms underlying the relaxation induced by isokaempferide from Amburana cearensis in the guinea-pig isolated trachea. Life Sci 79(1):98–104

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Wu TD (2001) Total synthesis of kaempferol and methylated kaempferol derivatives. J Chin Chem Soc 48(2):201–206

    Article  CAS  Google Scholar 

  • Lee JY, Jun DY, Yoon YH, Ko JY, Woo KS, Woo MH, Kim YH (2014) Anti-inflammatory effect of flavonoids kaempferol and biochanin A-enriched extract of Barnyard Millet (Echinochloa crus-galli var. frumentacea) grains in LPS-stimulated RAW264.7 Cells. J Life Sci 24(11):1157–1167

    Article  Google Scholar 

  • Leung HWC, Lin CJ, Hour MJ, Yang WH, Wang MY, Lee HZ (2007) Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food Chem Toxicol 45(10):2005–2013

    Article  CAS  PubMed  Google Scholar 

  • Li HL, Li SM, Luo YH, Xu WT, Zhang Y, Zhang T, Zhang DJ, Jin CH (2020) Kaempferide induces G0/G1 phase arrest and apoptosis via ROS-mediated signaling pathways in A549 human lung cancer cells. Nat Prod Commun 15(7):1–13

    CAS  Google Scholar 

  • Li X, Jin F, Lee HJ, Lee CJ (2021a) Kaempferol regulates the expression of airway MUC5AC mucin gene via IκBα-NF-κB p65 and p38–p44/42-Sp1 signaling pathways. Biomol Ther (seoul) 29(3):303–310

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Yu X, Wang Y, Zheng X, Chu Q (2021b) Kaempferol-3-O-rutinoside, a flavone derived from Tetrastigma hemsleyanum, suppresses lung adenocarcinoma via the calcium signaling pathway. Food Funct 12(18):8351–8365

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Wang L, Li Y, Yang B, Du C, Wang Y (2012) Preparation, pharmacokinetics, and tissue distribution properties of icariin-loaded stealth solid lipid nanoparticles in mice. Chin Herb Med 4(2):170–174

    CAS  Google Scholar 

  • Liu J, Cheng Y, Xiaoshuang Z, Xue Z, Chen S, Hu Z, Zhou C, Zhang E, Ma S (2015) Astragalin attenuates allergic inflammation in a murine asthma model. Inflammation 38(5):2007–2016

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Yu H, Cao Z, Gu J, Pei L, Jia M, Su M (2019) Kaempferol modulates autophagy and alleviates silica-induced pulmonary fibrosis. DNA Cell Biol 38(12):1418–1426

    Article  CAS  PubMed  Google Scholar 

  • Lux H, Baur X, Budnik LT, Heutelbeck A, Teixeira JP, Neumann E, Adliene D, Puišo J, Lucas D, Löndahl J, Damialis A, Goksel O, Orru H (2020) Outdoor air pollution from industrial chemicals causing new onset of asthma or COPD: a systematic review protocol. J Occup Med Toxicol 15:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Margaritopoulos GA, Vasarmidi E, Antoniou KM (2016) Pirfenidone in the treatment of idiopathic pulmonary fibrosis: an evidence-based review of its place in therapy. Core Evid 11:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. BioMed Res Int 2015:e905215

    Article  Google Scholar 

  • Martinez KB, Mackert JD, McIntosh MK (2017) Chapter 18—polyphenols and intestinal health. In: Watson RR (ed) Nutrition and functional foods for healthy aging. Academic Press, pp 191–210

    Chapter  Google Scholar 

  • Matthay MA, Zemans RL (2011) The acute respiratory distress syndrome: pathogenesis and treatment. Annu Rev Pathol 6:147–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122(8):2731–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat A, Herridge M, Randolph AG, Calfee CS (2019) Acute respiratory distress syndrome. Nat Rev Dis Primers 5(1):18

    Article  PubMed  PubMed Central  Google Scholar 

  • Molitorisova M, Sutovska M, Kazimierova I, Barborikova J, Joskova M, Novakova E, Franova S (2021) The anti-asthmatic potential of flavonol kaempferol in an experimental model of allergic airway inflammation. Eur J Pharmacol 891:173698

    Article  CAS  PubMed  Google Scholar 

  • Mullen W, Rouanet JM, Auger C, Teissèdre PL, Caldwell ST, Hartley RC, Lean MEJ, Edwards CA, Crozier A (2008) Bioavailability of [2-14C]Quercetin-4′-glucoside in Rats. J Agric Food Chem 56(24):12127–12137

    Article  CAS  PubMed  Google Scholar 

  • Murrison LB, Brandt EB, Myers JB, Hershey GKK (2019) Environmental exposures and mechanisms in allergy and asthma development. J Clin Invest 129(4):1504–1515

    Article  PubMed  PubMed Central  Google Scholar 

  • Myllärniemi M, Kaarteenaho R (2015) Pharmacological treatment of idiopathic pulmonary fibrosis—preclinical and clinical studies of pirfenidone, nintedanib, and N-acetylcysteine. Eur Clin Res J 2:26385

    Google Scholar 

  • Nalysnyk L, Cid-Ruzafa J, Rotella P, Esser D (2012) Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature. Eur Res Rev 21:355–361

    Article  Google Scholar 

  • Nasako H, Akizuki R, Takashina Y, Ishikawa Y, Shinoda T, Shirouzu M, Asai T, Matsunaga T, Endo S (1867) Ikari A (2020) Claudin-2 binding peptides, VPDSM and DSMKF, down-regulate claudin-2 expression and anticancer resistance in human lung adenocarcinoma A549 cells. Biochim Biophys Acta Mol Cell Res 4:118642

    Google Scholar 

  • Nath RL, Gorantla NJ, Joseph MS, Antony J, Thankachan S, Menon BD, Sankar S, Lankalapalli SR, John Anto R (2015) Kaempferide, the most active among the four flavonoids isolated and characterized from Chromolaena odorata, induces apoptosis in cervical cancer cells while being pharmacologically safe. RSC Adv 5(122):100912–100922

    Article  CAS  Google Scholar 

  • Németh K, Plumb GW, Berrin JG, Juge N, Jacob R, Naim HY, Williamson G, Swallow DM, Kroon PA (2003) Deglycosylation by small intestinal epithelial cell β-glucosidases is a critical step in the absorption and metabolism of dietary flavonoid glycosides in humans. Eur J Nutr 42(1):29–42

    Article  PubMed  Google Scholar 

  • Nguyen TTT, Tran E, Ong CK, Lee SK, Do PT, Huynh TT, Nguyen TH, Lee JJ, Tan Y, Ong CS, Huynh H (2003) Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J Cell Physiol 197(1):110–121

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SE, Kall M, Justesen U, Schou A, Dragsted LO (1997) Human absorption and excretion of flavonoids after broccoli consumption. In: Cancer Letters. Presented at the Food and cancer prevention II, pp 173–174

  • O’Leary KA, Day AJ, Needs PW, Mellon FA, O’Brien NM, Williamson G (2003) Metabolism of quercetin-7- and quercetin-3-glucuronides by an in vitro hepatic model: the role of human β-glucuronidase, sulfotransferase, catechol-O-methyltransferase and multi-resistant protein 2 (MRP2) in flavonoid metabolism. Biochem Pharmacol 65(3):479–491

    Article  PubMed  Google Scholar 

  • Pan C, Cao X, Tang L, Zhang Y, He H, Yin T, Piao H, Tang X (2018) Phospholipid complex of ICA and ICA II prepared by wet media milling for improving bioavailability. Eur J Lipid Sci Technol 120(4):1700317

    Article  Google Scholar 

  • Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2:270–278

    Article  PubMed  PubMed Central  Google Scholar 

  • Papi A, Blasi F, Canonica GW, Morandi L, Richeldi L, Rossi A (2020) Treatment strategies for asthma: reshaping the concept of asthma management. Allergy Asthma Clin Immunol 16:75

    Article  PubMed  PubMed Central  Google Scholar 

  • Park SH, Gong JH, Choi YJ, Kang MK, Kim YH, Kang YH (2015) Kaempferol Inhibits endoplasmic reticulum stress-associated mucus hypersecretion in airway epithelial cells and ovalbumin-sensitized mice. PLoS One 10:e0143526

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel MS (2021) In vitro anti-oxidant activity of kaempferol micro emulsion. J Genet Mol Biol 5(3):1–3

    Google Scholar 

  • Podder B, Song KS, Song HY, Kim YS (2014) Cytoprotective effect of kaempferol on paraquat-exposed BEAS-2B cells via modulating expression of MUC5AC. Biol Pharm Bull 37(9):1486–1494

    Article  CAS  PubMed  Google Scholar 

  • Qiao J, Sun S, Yuan L, Wang J (2017) Effects of icariin on asthma mouse model are associated with regulation of prostaglandin D2 level. Allergol Immunopathol 45(6):567–572

    Article  CAS  Google Scholar 

  • Rabha DJ, Singh TU, Rungsung S, Kumar T, Parida S, Lingaraju MC, Paul A, Sahoo M, Kumar D (2018) Kaempferol attenuates acute lung injury in caecal ligation and puncture model of sepsis in mice. Exp Lung Res 44(2):63–78

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar N, Sivanantham A, Ravikumar V, Rajasekaran S (2021) An overview on the role of plant-derived tannins for the treatment of lung cancer. Phytochemistry 188:112799

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran S, Rajasekar N, Sivanantham A (2021) Therapeutic potential of plant-derived tannins in non-malignant respiratory diseases. J Nutr Biochem 94:108632

    Article  CAS  PubMed  Google Scholar 

  • Riaz A, Rasul A, Hussain G, Zahoor MK, Jabeen F, Subhani Z, Younis T, Ali M, Sarfraz I, Selamoglu Z (2018) Astragalin: a bioactive phytochemical with potential therapeutic activities. Adv Pharmacol Pharm Sci 2018:e9794625

    Google Scholar 

  • Ribatti D, Tamma R, Annese T (2020) Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol 13(6):100773

    Article  PubMed  PubMed Central  Google Scholar 

  • Rofiee MS, Yusof MIM, Kek TL, Salleh MZ (2020) A Pharmacokinetic study by LC-MS/MS to quantify isoquercetin and astragalin in rat serum after oral administration of a combined extract of Moringa oleifera and Centella asiatica. Rev Bras Farmacogn 30:804–809

    Article  CAS  Google Scholar 

  • Safiri S, Carson-Chahhoud K, Noori M, Nejadghaderi SA, Sullman MJM, Heris JA, Ansarin K, Mansournia MA, Collins GS, Kolahi AA, Kaufman JS (2022) Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990–2019: results from the Global Burden of Disease Study 2019. Br Med J 378:e069679

    Article  Google Scholar 

  • Sahu SC, Gray GC (1994) Kaempferol-induced nuclear DNA damage and lipid peroxidation. Cancer Lett 85(2):159–164

    Article  CAS  PubMed  Google Scholar 

  • Sarkar A, Roy B (2022) Reproductive toxicity in male wistar rats caused by kaempferol derivative isolated from Lysimachia ramosa. J Sci Res 66(1):142–147

    Google Scholar 

  • Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M (2017) The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 15(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi X, Wang J, Lei Y, Cong C, Tan D, Zhou X (2019) Research progress on the PI3K/AKT signaling pathway in gynecological cancer (Review). Mol Med Rep 19(6):4529–4535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin SW, Jung E, Kim S, Kim JH, Kim EG, Lee J, Park D (2013) Antagonizing effects and mechanisms of Afzelin against UVB-induced cell damage. PLoS ONE 8:e61971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva Dos Santos J, Gonçalves Cirino JP, de Oliveira CP, Ortega MM (2020) The pharmacological action of kaempferol in central nervous system diseases: a review. Front Pharmacol 11:565700

    Article  PubMed  Google Scholar 

  • Sonoki H, Tanimae A, Endo S, Matsunaga T, Furuta T, Ichihara K, Ikari A (2017) Kaempherol and luteolin decrease claudin-2 expression mediated by inhibition of STAT3 in lung adenocarcinoma A549 cells. Nutrients 9:597

    Article  PubMed  PubMed Central  Google Scholar 

  • Soriano JB, Kendrick PJ, Paulson KR, Gupta V, Abrams EM, Adedoyin RA, Adhikari TB, Advani SM, Agrawal A, Ahmadian E, Alahdab F, Aljunid SM, Altirkawi KA, Alvis-Guzman N, Anber NH, Andrei CL, Anjomshoa M, Ansari F, Antó JM, Arabloo J, Athari SM, Athari SS, Awoke N, Badawi A, Banoub JAM, Bennett DA, Bensenor IM, Berfield KSS, Bernstein RS, Bhattacharyya K, Bijani A, Brauer M, Bukhman G, Butt ZA, Cámera LA, Car J, Carrero JJ, Carvalho F, Castañeda-Orjuela CA, Choi JYJ, Christopher DJ, Cohen AJ, Dandona L, Dandona R, Dang AK, Daryani A, de Courten B, Demeke FM, Demoz GT, De Neve JW, Desai R, Dharmaratne SD, Diaz D, Douiri A, Driscoll TR, Duken EE, Eftekhari A, Elkout H, Endries AY, Fadhil I, Faro A, Farzadfar F, Fernandes E, Filip I, Fischer F, Foroutan M, Garcia-Gordillo MA, Gebre AK, Gebremedhin KB, Gebremeskel GG, Gezae KE, Ghoshal AG, Gill PS, Gillum RF, Goudarzi H, Guo Y, Gupta R, Hailu GB, Hasanzadeh A, Hassen HY, Hay SI, Hoang CL, Hole MK, Horita N, Hosgood HD, Hostiuc M, Househ M, Ilesanmi OS, Ilic MD, Irvani SSN, Islam SMS, Jakovljevic M, Jamal AA, Jha RP, Jonas JB, Kabir Z, Kasaeian A, Kasahun GG, Kassa GM, Kefale AT, Kengne AP, Khader YS, Khafaie MA, Khan EA, Khan J, Khubchandani J, Kim YE, Kim YJ, Kisa S, Kisa A, Knibbs LD, Komaki H, Koul PA, Koyanagi A, Kumar GA, Lan Q, Lasrado S, Lauriola P, La Vecchia C, Le TT, Leigh J, Levi M, Li S, Lopez AD, Lotufo PA, Madotto F, Mahotra NB, Majdan M, Majeed A, Malekzadeh R, Mamun AA, Manafi N, Manafi F, Mantovani LG, Meharie BG, Meles HG, Meles GG, Menezes RG, Mestrovic T, Miller TR, Mini G, Mirrakhimov EM, Moazen B, Mohammad KA, Mohammed S, Mohebi F, Mokdad AH, Molokhia M, Monasta L, Moradi M, Moradi G, Morawska L, Mousavi SM, Musa KI, Mustafa G, Naderi M, Naghavi M, Naik G, Nair S, Nangia V, Nansseu JR, Nazari J, Ndwandwe DE, Negoi RI, Nguyen TH, Nguyen CT, Nguyen HLT, Nixon MR, Ofori-Asenso R, Ogbo FA, Olagunju AT, Olagunju TO, Oren E, Ortiz JR, Owolabi MO, Pa M, Pakhale S, Pana A, Panda-Jonas S, Park EK, Pham HQ, Postma MJ, Pourjafar H, Poustchi H, Radfar A, Rafiei A, Rahim F, Rahman MHU, Rahman MA, Rawaf S, Rawaf DL, Rawal L, Reiner RC Jr, Reitsma MB, Roever L, Ronfani L, Roro EM, Roshandel G, Rudd KE, Sabde YD, Sabour S, Saddik B, Safari S, Saleem K, Samy AM, Santric-Milicevic MM, Sao Jose BP, Sartorius B, Satpathy M, Savic M, Sawhney M, Sepanlou SG, Shaikh MA, Sheikh A, Shigematsu M, Shirkoohi R, Si S, Siabani S, Singh V, Singh JA, Soljak M, Somayaji R, Soofi M, Soyiri IN, Tefera YM, Temsah MH, Tesfay BE, Thakur JS, Toma AT, Tortajada-Girbés M, Tran KB, Tran BX, Tudor Car L, Ullah I, Vacante M, Valdez PR, van Boven JFM, Vasankari TJ, Veisani Y, Violante FS, Wagner GR, Westerman R, Wolfe CDA, Wondafrash DZ, Wondmieneh AB, Yonemoto N, Yoon SJ, Zaidi Z, Zamani M, Zar HJ, Zhang Y, Vos T (2020) Prevalence and attributable health burden of chronic respiratory diseases, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Res Med 8(6):585–596

    Article  Google Scholar 

  • Sun Z, Li Q, Hou R, Sun H, Tang Q, Wang H, Hao Z, Kang S, Xu T, Wu S (2019) Kaempferol-3-O-glucorhamnoside inhibits inflammatory responses via MAPK and NF-κB pathways in vitro and in vivo. Toxicol Appl Pharmacol 364:22–28

    Article  CAS  PubMed  Google Scholar 

  • Sun SC, Han R, Hou SS, Yi HQ, Chi SJ, Zhang AH (2020) Juglanin alleviates bleomycin-induced lung injury by suppressing inflammation and fibrosis via targeting sting signaling. Biomed Pharmacother 127:110119

    Article  CAS  PubMed  Google Scholar 

  • Telang DR, Patil AT, Pethe AM, Tatode AA, Anand S, Dave S (2016) Kaempferol-phospholipid complex: formulation, and evaluation of improved solubility, in vivo bioavailability, and antioxidant potential of kaempferol. J Excip Food Chem 7(4):89

    Google Scholar 

  • Thilakarathna SH, Rupasinghe HPV (2013) Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients 5(9):3367–3387

    Article  PubMed  PubMed Central  Google Scholar 

  • Thorburn A (2008) Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis 13(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellosa JCR, Regasini LO, Belló C, Schemberger JA, Khalil NM, de Araújo M-G, da Silva BV, Brunetti IL, de Faria Oliveira OMM (2015) Preliminary in vitro and ex vivo evaluation of afzelin, kaempferitrin and pterogynoside action over free radicals and reactive oxygen species. Arch Pharm Res 38(6):1168–1177

    Article  CAS  PubMed  Google Scholar 

  • Walgren RA, Lin JT, Kinne RKH, Walle T (2000) Cellular uptake of dietary flavonoid quercetin 4′-β-glucoside by sodium-dependent glucose transporter SGLT1. J Pharmacol Exp Ther 294(3):837–843

    CAS  PubMed  Google Scholar 

  • Wang FM, Yao TW, Zeng S (2003) Disposition of quercetin and kaempferol in human following an oral administration of Ginkgo biloba extract tablets. Eur J Drug Metab Pharmacokinet 28(3):173–177

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cao J, Zeng S (2005) Involvement of p-glycoprotein in regulating cellular levels of Ginkgo flavonols: quercetin, kaempferol, and isorhamnetin. J Pharm Pharmacol 57(6):751–758

    Article  CAS  PubMed  Google Scholar 

  • Watson DG, Oliveira EJ (1999) Solid-phase extraction and gas chromatography–mass spectrometry determination of kaempferol and quercetin in human urine after consumption of Ginkgo biloba tablets. J Chromatogr B Biomed Sci Appl 723(1–2):203–210

    Article  CAS  PubMed  Google Scholar 

  • Wendt MK, Smith JA, Schiemann WP (2010) Transforming growth factor-β-induced epithelial–mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene 29(49):6485–6498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis BC, Borok Z (2007) TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293(3):L525–L534

    Article  CAS  PubMed  Google Scholar 

  • Wu YT, Lin CW, Lin LC, Chiu AW, Chen KK, Tsai TH (2010) Analysis of biliary excretion of icariin in rats. J Agric Food Chem 58(18):9905–9911

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Kim M, Han J (2016) Icariin metabolism by human intestinal microflora. Molecules 21(9):1158

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu X, Kong W, Qi X, Wang S, Chen Y, Zhao Z, Wang W, Lin X, Lai J, Yu Z, Lai G (2019) Icariin induces apoptosis of human lung adenocarcinoma cells by activating the mitochondrial apoptotic pathway. Life Sci 239:116879

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2011) Integrating mechanisms of pulmonary fibrosis. J Exp Med 208(7):1339–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CQ, Liu BJ, Wu JF, Xu YC, Duan XH, Cao YX, Dong JC (2010) Icariin attenuates LPS-induced acute inflammatory responses: Involvement of PI3K/Akt and NF-κB signaling pathway. Eur J Pharmacol 642(1–3):146–153

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Yu J, Zhan J, Yang L, Guo L, Xu Y (2017) Pharmacokinetics, tissue distribution, and metabolism study of icariin in rat. BioMed Res Int 2017:e4684962

    Article  Google Scholar 

  • Xu C, Huang X, Tong Y, Feng X, Wang Y, Wang C, Jiang Y (2020) Icariin modulates the sirtuin/NF-κB pathway and exerts anti-aging effects in human lung fibroblasts. Mol Med Rep 22(5):3833–3839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W, Yu XC, Chen XY, Zhang L, Lu CT, Zhao YZ (2012) Pharmacokinetics and tissue distribution profile of icariin propylene glycol-liposome intraperitoneal injection in mice. J Pharm Pharmacol 64(2):190–198

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Yang W, He Z, He H, Yang X, Lu Y, Li H (2020) Kaempferol improves lung ischemia-reperfusion injury via antiinflammation and antioxidative stress regulated by SIRT1/HMGB1/NF-κB Axis. Front Pharmacol 10:1635

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang C, Yang W, He Z, Guo J, Yang X, Wang R, Li H (2021) Kaempferol alleviates oxidative stress and apoptosis through mitochondria-dependent pathway during lung ischemia-reperfusion injury. Front Pharmacol 12:624402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoncheva K, Hristova-Avakumova N, Hadjimitova V, Traykov T, Petrov P (2020) Evaluation of physicochemical and antioxidant properties of nanosized copolymeric micelles loaded with kaempferol. Pharmacia 67(2):49–54

    Article  CAS  Google Scholar 

  • Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27(4):355–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabela V, Sampath C, Oufir M, Moradi-Afrapoli F, Butterweck V, Hamburger M (2016) Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats. Fitoterapia 115:189–197

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Ghosh S (2001) Toll-like receptor–mediated NF-κB activation: a phylogenetically conserved paradigm in innate immunity. J Clin Invest 107(1):13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Wang QS, Cui YL, Meng FC, Lin KM (2012) Changes in the intestinal absorption mechanism of icariin in the nanocavities of cyclodextrins. Int J Nanomed 7:4239–4249

    CAS  Google Scholar 

  • Zhang K, Gu L, Chen J, Zhang Y, Jiang Y, Zhao L, Bi K, Chen X (2015) Preparation and evaluation of kaempferol–phospholipid complex for pharmacokinetics and bioavailability in SD rats. J Pharm Biomed Anal 114:168–175

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Ai X, Duan Y, Xue M, He W, Wang C, Xu T, Xu M, Liu B, Li C, Wang Z, Zhang R, Wang G, Tian S, Liu H (2017) Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomed Pharmacother 89:660–672

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Zhu L, Zhao M, Shi J, Li Y, Yu J, Jiang H, Wu J, Tong Y, Liu Y, Hu M, Lu L, Liu Z (2016) In vivo exposure of kaempferol is driven by phase II metabolic enzymes and efflux transporters. AAPS J 18(5):1289–1299

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Liu D, Liu N, Kuang Y, Tai Q (2019) Astragalin reduces lipopolysaccharide-induced acute lung injury in rats via induction of heme oxygenase-1. Arch Pharm Res 42(8):704–711

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, Li X, Zhou S, Jiang P, Liu X, Ouyang M, Nie Y, Chen X, Zhang L, Liu Y, Tao T, Tang J (2020) Interplay between RAGE and TLR4 regulates HMGB1-induced inflammation by promoting cell surface expression of RAGE and TLR4. J Immunol 205(3):767–775

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Nie X (2015) Afzelin attenuates asthma phenotypes by downregulation of GATA3 in a murine model of asthma. Mol Med Rep 12(1):71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Wang M, Guo Z, Zhang X (2016) Pharmacokinetic evaluation of the interaction between oral kaempferol and ethanol in rats. Acta Pharm 66(4):563–568

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The first author (S. M.) gratefully acknowledges the support of Indian Council of Medical Research (ICMR), New Delhi, India for the award of ICMR-Senior Research Fellowship (SRF; Award No: 45/14/2022-Toxi/BMS).

Funding

No funding is associated with this work.

Author information

Authors and Affiliations

Authors

Contributions

SM: investigation, data curation, writing—review and editing. DG: investigation, data curation, writing—review and editing. RRT: writing—review and editing. SR: conceptualisation, writing—original draft and editing.

Corresponding author

Correspondence to Subbiah Rajasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Gandhi, D., Tiwari, R.R. et al. Beneficial role of kaempferol and its derivatives from different plant sources on respiratory diseases in experimental models. Inflammopharmacol 31, 2311–2336 (2023). https://doi.org/10.1007/s10787-023-01282-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01282-1

Keywords

Navigation