Skip to main content
Log in

Incomplete Knockdown of MyD88 Inhibits LPS-Induced Lung Injury and Lung Fibrosis in a Mouse Model

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Acute lung injury (ALI) is a life-threatening disorder stemmed mainly from an uncontrolled inflammatory response. Lipopolysaccharide (LPS) is commonly used to induce ALI animal models. Toll-like receptor 4 (TLR4) is the main receptor for LPS, and myeloid differentiation factor 88 (MyD88) is a key adaptor protein molecule in the Toll-like receptor (TLR) signaling pathway. Thus, MyD88 knockdown heterozygous mice (MyD88+/−) were used to investigate the effect of incomplete knockout of the MyD88 gene on indirect LPS-induced ALI through intraperitoneal injection of LPS. The LPS-induced ALI significantly upregulated MyD88 expression, and heterozygous mice with incomplete knockout of the MyD88 gene (MyD88+/−) ameliorated LPS-induced histopathological injury and collagen fiber deposition. Heterozygous mice with incomplete knockout of the MyD88 gene (MyD88+/−) inhibited LPS-induced nuclear factor-κB (NF-κB) pathway activation, but TLR-4 expression tended to be upregulated. Incomplete knockdown of the MyD88 gene also downregulated LPS-induced expression of IL1-β, IL-6, TNF-α, TGF-β, SMAD2, and α-SMA. The transcriptome sequencing also revealed significant changes in LPS-regulated genes (such as IL-17 signaling pathway genes) after the incomplete knockdown of MyD88. In conclusion, this paper clarified that LPS activates the downstream NF-κB pathway depending on the MyD88 signaling pathway, which induces the secretion of inflammatory cytokines such as IL-1β/IL-6/TNF-α and ultimately triggers ALI. Incomplete knockdown of the MyD88 reverses LPS-induced lung fibrosis, which confirmed the vital role of MyD88 in LPS-induced ALI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

This study did not include data deposited in external repositories. All relevant data are available in the manuscript.

References

  1. Matuschak, G.M., and A.J. Lechner. 2010. Acute lung injury and the acute respiratory distress syndrome: pathophysiology and treatment. Missouri Medicine 107 (4): 252–258.

    PubMed  PubMed Central  Google Scholar 

  2. Mokra, D. 2020. Acute lung injury - from pathophysiology to treatment. Physiological Research 69 (Suppl 3): S353–S366.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Matthay, M.A., and G.A. Zimmerman. 2005. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. American Journal of Respiratory Cell and Molecular Biology 33 (4): 319–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herold, S., N.M. Gabrielli, and I. Vadasz. 2013. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. American Journal of Physiology. Lung Cellular and Molecular Physiology 305 (10): L665-681.

    Article  CAS  PubMed  Google Scholar 

  5. Dengler, V., G.P. Downey, R.M. Tuder, H.K. Eltzschig, and E.P. Schmidt. 2013. Neutrophil intercellular communication in acute lung injury. Emerging roles of microparticles and gap junctions. American Journal of Respiratory Cell and Molecular Biology 49 (1): 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Densmore, J.C., P.R. Signorino, J. Ou, O.A. Hatoum, J.J. Rowe, Y. Shi, S. Kaul, D.W. Jones, R.E. Sabina, K.A. Pritchard Jr., et al. 2006. Endothelium-derived microparticles induce endothelial dysfunction and acute lung injury. Shock 26 (5): 464–471.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, W.L., and G.P. Downey. 2001. Neutrophil activation and acute lung injury. Current Opinion in Critical Care 7 (1): 1–7.

    Article  CAS  PubMed  Google Scholar 

  8. Mowery, N.T., W.T.H. Terzian, and A.C. Nelson. 2020. Acute lung injury. Current Problems in Surgery 57 (5): 100777.

    Article  PubMed  Google Scholar 

  9. Litvak, V., S.A. Ramsey, A.G. Rust, D.E. Zak, K.A. Kennedy, A.E. Lampano, M. Nykter, I. Shmulevich, and A. Aderem. 2009. Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nature Immunology 10 (4): 437–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Medzhitov, R., and T. Horng. 2009. Transcriptional control of the inflammatory response. Nature Reviews Immunology 9 (10): 692–703.

    Article  CAS  PubMed  Google Scholar 

  11. Buchholz, B.M., T.R. Billiar, and A.J. Bauer. 2010. Dominant role of the MyD88-dependent signaling pathway in mediating early endotoxin-induced murine ileus. American Journal of Physiology. Gastrointestinal and Liver Physiology 299 (2): G531-538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong, D.V., R.C. Lima-Junior, C.B. Carvalho, V.F. Borges, C.W. Wanderley, A.X. Bem, C.A. Leite, M.A. Teixeira, G.L. Batista, R.L. Silva, et al. 2015. The adaptor protein Myd88 is a key signaling molecule in the pathogenesis of irinotecan-induced intestinal mucositis. PLoS ONE 10 (10): e0139985.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chen, L., L. Zheng, P. Chen, and G. Liang. 2020. Myeloid differentiation primary response protein 88 (MyD88): the central hub of TLR/IL-1R signaling. Journal of Medicinal Chemistry 63 (22): 13316–13329.

    Article  CAS  PubMed  Google Scholar 

  14. Bagchi, A., E.A. Herrup, H.S. Warren, J. Trigilio, H.S. Shin, C. Valentine, and J. Hellman. 2007. MyD88-dependent and MyD88-independent pathways in synergy, priming, and tolerance between TLR agonists. The Journal of Immunology 178 (2): 1164–1171.

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, S., X. Li, N.J. Hess, Y. Guan, and R.I. Tapping. 2016. TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. The Journal of Immunology 196 (9): 3834–3841.

    Article  CAS  PubMed  Google Scholar 

  16. Funami, K., M. Sasai, Y. Ohba, H. Oshiumi, T. Seya, and M. Matsumoto. 2007. Spatiotemporal mobilization of Toll/IL-1 receptor domain-containing adaptor molecule-1 in response to dsRNA. The Journal of Immunology 179 (10): 6867–6872.

    Article  CAS  PubMed  Google Scholar 

  17. Gay, N.J., M.F. Symmons, M. Gangloff, and C.E. Bryant. 2014. Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology 14 (8): 546–558.

    Article  CAS  PubMed  Google Scholar 

  18. Fitzgerald, K.A., E.M. Palsson-McDermott, A.G. Bowie, C.A. Jefferies, A.S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M.T. Harte, et al. 2001. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 413 (6851): 78–83.

    Article  CAS  PubMed  Google Scholar 

  19. Ohnishi, H., H. Tochio, Z. Kato, T. Kimura, H. Hiroaki, N. Kondo, and M. Shirakawa. 2010. 1H, 13C, and 15N resonance assignment of the TIR domain of human MyD88. Biomolecular NMR Assignments 4 (2): 123–125.

    Article  CAS  PubMed  Google Scholar 

  20. Motshwene, P.G., M.C. Moncrieffe, J.G. Grossmann, C. Kao, M. Ayaluru, A.M. Sandercock, C.V. Robinson, E. Latz, and N.J. Gay. 2009. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. Journal of Biological Chemistry 284 (37): 25404–25411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Q., R. Dziarski, C.J. Kirschning, M. Muzio, and D. Gupta. 2001. Micrococci and peptidoglycan activate TLR2–>MyD88–>IRAK–>TRAF–>NIK–>IKK–>NF-kappaB signal transduction pathway that induces transcription of interleukin-8. Infection and Immunity 69 (4): 2270–2276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chow, J.C., D.W. Young, D.T. Golenbock, W.J. Christ, and F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. Journal of Biological Chemistry 274 (16): 10689–10692.

    Article  CAS  PubMed  Google Scholar 

  23. Nativel, B., D. Couret, P. Giraud, O. Meilhac, C.L. d’Hellencourt, W. Viranaicken, and C.R. Da Silva. 2017. Porphyromonas gingivalis lipopolysaccharides act exclusively through TLR4 with a resilience between mouse and human. Science and Reports 7 (1): 15789.

    Article  Google Scholar 

  24. Yang, H., D.W. Young, F. Gusovsky, and J.C. Chow. 2000. Cellular events mediated by lipopolysaccharide-stimulated toll-like receptor 4: MD-2 is required for activation of mitogen-activated protein kinases and Elk-1. Journal of Biological Chemistry 275 (27): 20861–20866.

    Article  CAS  PubMed  Google Scholar 

  25. Hoshino, K., O. Takeuchi, T. Kawai, H. Sanjo, T. Ogawa, Y. Takeda, K. Takeda, and S. Akira. 1999. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. The Journal of Immunology 162 (7): 3749–3752.

    Article  CAS  PubMed  Google Scholar 

  26. Takeuchi, O., K. Hoshino, T. Kawai, H. Sanjo, H. Takada, T. Ogawa, K. Takeda, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11 (4): 443–451.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, P., X. Han, B. Mo, G. Huang, and C. Wang. 2017. LPS enhances TLR4 expression and IFNgamma production via the TLR4/IRAK/NFkappaB signaling pathway in rat pulmonary arterial smooth muscle cells. Molecular Medicine Reports 16 (3): 3111–3116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hagar, J.A., D.A. Powell, Y. Aachoui, R.K. Ernst, and E.A. Miao. 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341 (6151): 1250–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson, E.R., and M.A. Matthay. 2010. Acute lung injury: epidemiology, pathogenesis, and treatment. Journal of Aerosol Medicine and Pulmonary Drug Delivery 23 (4): 243–252.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Andonegui, G., S.M. Goyert, and P. Kubes. 2002. Lipopolysaccharide-induced leukocyte-endothelial cell interactions: a role for CD14 versus toll-like receptor 4 within microvessels. The Journal of Immunology 169 (4): 2111–2119.

    Article  CAS  PubMed  Google Scholar 

  31. He, Z., Y. Zhu, and H. Jiang. 2009. Toll-like receptor 4 mediates lipopolysaccharide-induced collagen secretion by phosphoinositide3-kinase-Akt pathway in fibroblasts during acute lung injury. Journal of Receptor and Signal Transduction Research 29 (2): 119–125.

    Article  CAS  PubMed  Google Scholar 

  32. Janga, H., L. Cassidy, F. Wang, D. Spengler, S. Oestern-Fitschen, M.F. Krause, A. Seekamp, A. Tholey, and S. Fuchs. 2018. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. Journal of Cellular and Molecular Medicine 22 (2): 982–998.

    Article  CAS  PubMed  Google Scholar 

  33. Imai, Y., K. Kuba, G.G. Neely, R. Yaghubian-Malhami, T. Perkmann, G. van Loo, M. Ermolaeva, R. Veldhuizen, Y.H. Leung, H. Wang, et al. 2008. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133 (2): 235–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chao, H.H., P.Y. Chen, W.R. Hao, W.P. Chiang, T.H. Cheng, S.H. Loh, Y.M. Leung, J.C. Liu, J.J. Chen, and L.C. Sung. 2017. Lipopolysaccharide pretreatment increases protease-activated receptor-2 expression and monocyte chemoattractant protein-1 secretion in vascular endothelial cells. Journal of Biomedical Science 24 (1): 85.

    Article  PubMed  PubMed Central  Google Scholar 

  35. He, Z., Y. Gao, Y. Deng, W. Li, Y. Chen, S. Xing, X. Zhao, J. Ding, and X. Wang. 2012. Lipopolysaccharide induces lung fibroblast proliferation through Toll-like receptor 4 signaling and the phosphoinositide3-kinase-Akt pathway. PLoS ONE 7 (4): e35926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alam, S., S. Javor, M. Degardin, D. Ajami, M. Rebek, T.L. Kissner, D.M. Waag, J. Rebek Jr., and K.U. Saikh. 2015. Structure-based design and synthesis of a small molecule that exhibits anti-inflammatory activity by inhibition of MyD88-mediated signaling to bacterial toxin exposure. Chemical Biology & Drug Design 86 (2): 200–209.

    Article  CAS  Google Scholar 

  37. Adachi, O., T. Kawai, K. Takeda, M. Matsumoto, H. Tsutsui, M. Sakagami, K. Nakanishi, and S. Akira. 1998. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9 (1): 143–150.

    Article  CAS  PubMed  Google Scholar 

  38. Kawai, T., O. Adachi, T. Ogawa, K. Takeda, and S. Akira. 1999. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11 (1): 115–122.

    Article  CAS  PubMed  Google Scholar 

  39. Lord, K.A., B. Hoffman-Liebermann, and D.A. Liebermann. 1990. Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5 (7): 1095–1097.

    CAS  PubMed  Google Scholar 

  40. Wesche, H., W.J. Henzel, W. Shillinglaw, S. Li, and Z. Cao. 1997. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7 (6): 837–847.

    Article  CAS  PubMed  Google Scholar 

  41. Cao, F., C. Wang, D. Long, Y. Deng, K. Mao, and H. Zhong. 2021. Network-based integrated analysis of transcriptomic studies in dissecting gene signatures for LPS-induced acute lung injury. Inflammation 44 (6): 2486–2498.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hui Fan and Yanni Wang designed the experiments and completed the manuscript. Kaochang Zhao, Li Su, and Chong Deng carried out the experiments. Guozhong Chen analyzed the data, and Jie Huang contributed to the final version of the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Guozhong Chen.

Ethics declarations

Ethics Approval

This study was approved by the Laboratory Animal Management Committee of Chongqing Liangjiang Chuangxiang Medical Inspection and Certification Technology Co., Ltd. (No. 2022001). All experiments were performed in accordance with the National Institutes of Health guidelines.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Wang, Y., Zhao, K. et al. Incomplete Knockdown of MyD88 Inhibits LPS-Induced Lung Injury and Lung Fibrosis in a Mouse Model. Inflammation 46, 2276–2288 (2023). https://doi.org/10.1007/s10753-023-01877-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01877-4

KEY WORDS

Navigation