Skip to main content

Advertisement

Log in

Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth-supporting tissues. The gingival epithelium is the first barrier of periodontal tissue against oral pathogens and harmful substances. The structure and function of epithelial lining are essential for maintaining the integrity of the epithelial barrier. Abnormal apoptosis can lead to the decrease of functional keratinocytes and break homeostasis in gingival epithelium. Interleukin-22 is a cytokine that plays an important role in epithelial homeostasis in intestinal epithelium, inducing proliferation and inhibiting apoptosis, but its role in gingival epithelium is poorly understood. In this study, we investigated the effect of interleukin-22 on apoptosis of gingival epithelial cells during periodontitis. Interleukin-22 topical injection and Il22 gene knockout were performed in experimental periodontitis mice. Human gingival epithelial cells were co-cultured with Porphyromonas gingivalis with interleukin-22 treatment. We found that interleukin-22 inhibited apoptosis of gingival epithelial cells during periodontitis in vivo and in vitro, decreasing Bax expression and increasing Bcl-xL expression. As for the underlying mechanisms, we found that interleukin-22 reduced the expression of TGF-β receptor type II and inhibited the phosphorylation of Smad2 in gingival epithelial cells during periodontitis. Blockage of TGF-β receptors attenuated apoptosis induced by Porphyromonas gingivalis and increased Bcl-xL expression stimulated by interleukin-22. These results confirmed the inhibitory effect of interleukin-22 on apoptosis of gingival epithelial cells and revealed the involvement of TGF-β signaling pathway in gingival epithelial cell apoptosis during periodontitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kinane, D.F., P.G. Stathopoulou, and P.N. Papapanou. 2017. Periodontal diseases. Nature Reviews Disease Primers 3: 17038. https://doi.org/10.1038/nrdp.2017.38.

    Article  PubMed  Google Scholar 

  2. Vitkov, L., J. Singh, C. Schauer, et al. 2023. Breaking the gingival barrier in periodontitis. International Journal of Molecular Sciences 24: 4544. https://doi.org/10.3390/ijms24054544.

  3. Peng X., L. Cheng, Y. You, et al. 2022. Oral microbiota in human systematic diseases. International Journal of Oral Science 14: 14. https://doi.org/10.1038/s41368-022-00163-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Groeger, S. E., and J. Meyle. 2015. Epithelial barrier and oral bacterial infection. Periodontology 2000 69: 46–67. https://doi.org/10.1111/prd.12094.

  5. Zhang, J., L. Cen L, X. Zhang, et al. 2022. MPST deficiency promotes intestinal epithelial cell apoptosis and aggravates inflammatory bowel disease via AKT. Redox Biology 56: 102469. https://doi.org/10.1016/j.redox.2022.102469.

  6. Listyarifah, D., A. Al-Samadi, A. Salem, et al. 2017. Infection and apoptosis associated with inflammation in periodontitis: An immunohistologic study. Oral Diseases 23: 1144–1154. https://doi.org/10.1111/odi.12711.

    Article  CAS  PubMed  Google Scholar 

  7. Ouyang, W., and A. O’Garra. 2019. IL-10 family cytokines IL-10 and IL-22: From basic science to clinical translation. Immunity 50: 871–891. https://doi.org/10.1016/j.immuni.2019.03.020.

    Article  CAS  PubMed  Google Scholar 

  8. Rutz, S., C. Eidenschenk, and W. Ouyang. 2013. IL-22, not simply a Th17 cytokine. Nature Reviews Immunology 252: 116–132. https://doi.org/10.1111/imr.12027.

    Article  CAS  Google Scholar 

  9. Guo, X., J. Qiu, T. Tu, et al. 2014. Induction of innate lymphoid cell-derived interleukin-22 by the transcription factor STAT3 mediates protection against intestinal infection. Immunity 40: 25–39. https://doi.org/10.1016/j.immuni.2013.10.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alcorn, J.F. 2020. IL-22 plays a critical role in maintaining epithelial integrity during pulmonary infection. Frontiers in Immunology 11: 1160. https://doi.org/10.3389/fimmu.2020.01160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai, J., J. Bai, and M. Yang. 2021. Interleukin-22 attenuates acute pancreatitis-associated intestinal mucosa injury in mice via STAT3 activation. Gut and Liver 15: 771–781. https://doi.org/10.5009/gnl20210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, B., D. Han, F. Li, et al. 2020. Elevated IL-22 in psoriasis plays an anti-apoptotic role in keratinocytes through mediating Bcl-xL/Bax. Apoptosis 25: 663–673. https://doi.org/10.1007/s10495-020-01623-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan, S., D. Yang, J. Zhang, et al. 2018. Temporal expression of interleukin-22, interleukin-22 receptor 1 and interleukin-22-binding protein during experimental periodontitis in rats. Journal of Periodontal Research 53: 250–257. https://doi.org/10.1111/jre.12512.

    Article  CAS  PubMed  Google Scholar 

  14. Kotenko, S.V., L.S. Izotova, O.V. Mirochnitchenko, et al. 2001. Identification of the functional interleukin-22 (IL-22) receptor complex: The IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes. Journal of Biological Chemistry 276: 2725–2732. https://doi.org/10.1074/jbc.M007837200.

    Article  CAS  PubMed  Google Scholar 

  15. Dumoutier, L., D. Lejeune, D. Colau, et al. 2001. Cloning and characterization of IL-22 binding protein, a natural antagonist of IL-10-related T cell-derived inducible factor/IL-22. Journal of Immunology 166: 7090–7095. https://doi.org/10.4049/jimmunol.166.12.7090.

    Article  CAS  Google Scholar 

  16. Chen, X., J. Dou, Z. Fu, et al. 2022. Macrophage M1 polarization mediated via the IL-6/STAT3 pathway contributes to apical periodontitis induced by Porphyromonas gingivalis. Journal of Applied Oral Science 30: e20220316. https://doi.org/10.1590/1678-7757-2022-0316.

  17. Nadeem, A., N.O. Al-Harbi, M.A. Ansari, et al. 2017. Psoriatic inflammation enhances allergic airway inflammation through IL-23/STAT3 signaling in a murine model. Biochemical Pharmacology 124: 69–82. https://doi.org/10.1016/j.bcp.2016.10.012.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, G., Y. Yu, C. Sun, et al. 2016. STAT3 selectively interacts with Smad3 to antagonize TGF-β signalling. Oncogene 35: 4388–4398. https://doi.org/10.1038/onc.2015.446.

    Article  CAS  PubMed  Google Scholar 

  19. Heldin, C.H., M. Landström, and A. Moustakas. 2009. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Current Opinion in Cell Biology 21: 166–176. https://doi.org/10.1016/j.ceb.2009.01.021.

    Article  CAS  PubMed  Google Scholar 

  20. Shimoe, M., T. Yamamoto, N. Shiomi, et al. 2014. Overexpression of Smad2 inhibits proliferation of gingival epithelial cells. Journal of Periodontal Research 49: 290–298. https://doi.org/10.1111/jre.12106.

    Article  CAS  PubMed  Google Scholar 

  21. Gu, P., D. Wang, J. Zhang, et al. 2021. Protective function of interleukin-22 in pulmonary fibrosis. Clinical and Translational Medicine 11: e509. https://doi.org/10.1002/ctm2.509.

  22. Polak, D., A. Wilensky, L. Shapira, et al. 2009. Mouse model of experimental periodontitis induced by Porphyromonas gingivalis/Fusobacterium nucleatum infection: Bone loss and host response. Journal of Clinical Periodontology 36: 406–410. https://doi.org/10.1111/j.1600-051X.2009.01393.x.

    Article  PubMed  Google Scholar 

  23. Graves, D.T., A. Alshabab, M.L. Albiero, et al. 2018. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. Journal of Clinical Periodontology 45: 285–292. https://doi.org/10.1111/jcpe.12851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao, L., M. Kang, M.J. Zhang, et al. 2020. Polymicrobial periodontal disease triggers a wide radius of effect and unique virome. npj Biofilms and Microbiomes 6: 10. https://doi.org/10.1038/s41522-020-0120-7.

  25. de Molon, R.S., V.I. Mascarenhas, E.D. de Avila, et al. 2016. Long-term evaluation of oral gavage with periodontopathogens or ligature induction of experimental periodontal disease in mice. Clinical Oral Investigations 20: 1203–1216. https://doi.org/10.1007/s00784-015-1607-0.

    Article  PubMed  Google Scholar 

  26. Hu, Z., Y. Chen, M. Gao, et al. 2023. Novel strategy for primary epithelial cell isolation: combination of hyaluronidase and collagenase I. Cell Proliferation 56: e13320. https://doi.org/10.1111/cpr.13320.

  27. Kedjarune, U., S. Pongprerachok, P. Arpornmaeklong, et al. 2001. Culturing primary human gingival epithelial cells: Comparison of two isolation techniques. Journal of cranio-maxillo-facial surgery 29: 224–231. https://doi.org/10.1054/jcms.2001.0229.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng, F., Y. Shen, P. Mohanasundaram, et al. 2016. Vimentin coordinates fibroblast proliferation and keratinocyte differentiation in wound healing via TGF-β-Slug signaling. Proceedings of the National Academy of Sciences of the United States of America 113: E4320–E4327. https://doi.org/10.1073/pnas.1519197113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng, R.T., Y. Sun, X.D. Zhou, et al. 2022. Treponema denticola promotes OSCC development via the TGF-β signaling pathway. Journal of Dental Research 101: 704–713. https://doi.org/10.1177/00220345211067401.

    Article  CAS  PubMed  Google Scholar 

  30. Velsko, I. M., S. S. Chukkapalli, M. F. Rivera, et al. 2014. Active invasion of oral and aortic tissues by Porphyromonas gingivalis in mice causally links periodontitis and atherosclerosis. PLoS One 9: e97811. https://doi.org/10.1371/journal.pone.0097811.

  31. Yoshimoto, T., T. Fujita, M. Kajiya, et al. 2015. Involvement of smad2 and Erk/Akt cascade in TGF-β1-induced apoptosis in human gingival epithelial cells. Cytokine 75: 165–173. https://doi.org/10.1016/j.cyto.2015.03.011.

    Article  CAS  PubMed  Google Scholar 

  32. Groeger, S., E. Doman, T. Chakraborty, et al. 2010. Effects of Porphyromonas gingivalis infection on human gingival epithelial barrier function in vitro. European Journal of Oral Sciences 118: 582–589. https://doi.org/10.1111/j.1600-0722.2010.00782.x.

    Article  PubMed  Google Scholar 

  33. Ebersole, J.L., S.S. Kirakodu, and O.A. Gonzalez. 2021. Oral microbiome interactions with gingival gene expression patterns for apoptosis, autophagy and hypoxia pathways in progressing periodontitis. Immunology 162: 405–417. https://doi.org/10.1111/imm.13292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Inaba, H., A. Amano, R. J. Lamont, et al. 2018. Cell cycle arrest and apoptosis induced by Porphyromonas gingivalis require Jun N-terminal protein kinase- and p53-mediated p38 activation in human trophoblasts. Infection and Immunity 86: e00923-17. https://doi.org/10.1128/iai.00923-17.

  35. Kinane, J.A., M.R. Benakanakere, J. Zhao, et al. 2012. Porphyromonas gingivalis influences actin degradation within epithelial cells during invasion and apoptosis. Cellular Microbiology 14: 1085–1096. https://doi.org/10.1111/j.1462-5822.2012.01780.x.

    Article  CAS  PubMed  Google Scholar 

  36. Li, S., G. Dong, A. Moschidis, et al. 2013. P. gingivalis modulates keratinocytes through FOXO transcription factors. PLoS One 8: e78541. https://doi.org/10.1371/journal.pone.0078541.

  37. Desta, T., and D.T. Graves. 2007. Fibroblast apoptosis induced by Porphyromonas gingivalis is stimulated by a gingipain and caspase-independent pathway that involves apoptosis-inducing factor. Cellular Microbiology 9: 2667–2675. https://doi.org/10.1111/j.1462-5822.2007.00987.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sheets, S.M., J. Potempa, J. Travis, et al. 2006. Gingipains from Porphyromonas gingivalis W83 synergistically disrupt endothelial cell adhesion and can induce caspase-independent apoptosis. Infection and Immunity 74: 5667–5678. https://doi.org/10.1128/iai.01140-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boisvert, H., and M.J. Duncan. 2010. Translocation of Porphyromonas gingivalis gingipain adhesin peptide A44 to host mitochondria prevents apoptosis. Infection and Immunity 78: 3616–3624. https://doi.org/10.1128/iai.00187-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mao, S., Y. Park, Y. Hasegawa, et al. 2007. Intrinsic apoptotic pathways of gingival epithelial cells modulated by Porphyromonas gingivalis. Cellular Microbiology 9: 1997–2007. https://doi.org/10.1111/j.1462-5822.2007.00931.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stathopoulou, P.G., J.C. Galicia, M.R. Benakanakere, et al. 2009. Porphyromonas gingivalis induce apoptosis in human gingival epithelial cells through a gingipain-dependent mechanism. BMC Microbiology 9: 107. https://doi.org/10.1186/1471-2180-9-107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Qiao, Y.Y., X.Q. Liu, C.Q. Xu, et al. 2016. Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice. World Journal of Gastroenterology 22: 5023–5032. https://doi.org/10.3748/wjg.v22.i21.5023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, W., W. Zai, J. Fan, et al. 2020. Interleukin-22 drives a metabolic adaptive reprogramming to maintain mitochondrial fitness and treat liver injury. Theranostics 10: 5879–5894. https://doi.org/10.7150/thno.43894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wu, Z., Z. Hu, X. Cai, et al. 2017. Interleukin 22 attenuated angiotensin II induced acute lung injury through inhibiting the apoptosis of pulmonary microvascular endothelial cells. Scientific reports 7: 2210. https://doi.org/10.1038/s41598-017-02056-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takahashi, J., M. Yamamoto, H. Yasukawa, et al. 2020. Interleukin-22 directly activates myocardial stat3 (signal transducer and activator of transcription-3) signaling pathway and prevents myocardial ischemia reperfusion injury. Journal of the American Heart Association 9: e014814. https://doi.org/10.1161/JAHA.119.014814.

  46. Qin, X., L. Yuan, H. Ruan, et al. 2019. Interaction of IL-22/IL-22R1 promotes cell proliferation and suppresses apoptosis of colorectal cancer via phosphorylation of STAT3. Biocell 43: 89–98. https://doi.org/10.32604/biocell.2019.06352.

  47. Li, M., D. Wang, J. He, et al. 2020. Bcl-X(L): A multifunctional anti-apoptotic protein. Pharmacological Research 151: 104547. https://doi.org/10.1016/j.phrs.2019.104547.

  48. Youle, R.J., and A. Strasser. 2008. The BCL-2 protein family: Opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology 9: 47–59. https://doi.org/10.1038/nrm2308.

    Article  CAS  PubMed  Google Scholar 

  49. Murad, F., and A.J. Garcia-Saez. 2021. Bcl-xL inhibits tBid and Bax via distinct mechanisms. Faraday Discussions 232: 86–102. https://doi.org/10.1039/d0fd00045k.

    Article  CAS  PubMed  Google Scholar 

  50. Ryter, S.W., H.P. Kim, A. Hoetzel, et al. 2007. Mechanisms of cell death in oxidative stress. Antioxidants and Redox Signaling 9: 49–89. https://doi.org/10.1089/ars.2007.9.49.

    Article  CAS  PubMed  Google Scholar 

  51. Pickert, G., C. Neufert, M. Leppkes, et al. 2009. STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. Journal of Experimental Medicine 206: 1465–1472. https://doi.org/10.1084/jem.20082683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dong, Y., C. Hu, C. Huang, et al. 2021. Interleukin-22 plays a protective role by regulating the JAK2-STAT3 pathway to improve inflammation, oxidative stress, and neuronal apoptosis following cerebral ischemia-reperfusion injury. Mediators of Inflammation 2021: 6621296. https://doi.org/10.1155/2021/6621296.

  53. Brown, K.A., J.A. Pietenpol, and H.L. Moses. 2007. A tale of two proteins: Differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling. Journal of Cellular Biochemistry 101: 9–33. https://doi.org/10.1002/jcb.21255.

    Article  CAS  PubMed  Google Scholar 

  54. Bohn, S., L. Hexemer, Z. Huang, et al. 2023. State- and stimulus-specific dynamics of SMAD signaling determine fate decisions in individual cells. Proceedings of the National Academy of Sciences of the United States of America 120: e2210891120. https://doi.org/10.1073/pnas.2210891120.

  55. Zhang, S., C. Li, J. Liu, et al. 2020. Fusobacterium nucleatum promotes epithelial-mesenchymal transition through regulation of the lncRNA MIR4435-2HG/miR-296-5p/Akt2/SNAI1 signaling pathway. FEBS Journal 287: 4032–4047. https://doi.org/10.1111/febs.15233.

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J., J.S. Roberts, K.R. Atanasova, et al. 2017. Human primary epithelial cells acquire an epithelial-mesenchymal-transition phenotype during long-term infection by the oral opportunistic pathogen, Porphyromonas gingivalis. Frontiers in cellular and infection microbiology 7: 493. https://doi.org/10.3389/fcimb.2017.00493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saliem, S.S., S.Y. Bede, A.A. Abdulkareem, et al. 2022. Gingival tissue samples from periodontitis patients demonstrate epithelial-mesenchymal transition phenotype. Journal of Periodontal Research 58: 247-255. https://doi.org/10.1111/jre.13086.

    Article  CAS  PubMed  Google Scholar 

  58. Abdulkareem, A.A., R.M. Shelton, G. Landini, et al. 2018. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. Journal of Periodontal Research 53: 565–574. https://doi.org/10.1111/jre.12546.

    Article  CAS  PubMed  Google Scholar 

  59. Johnson, J.R., M. Nishioka, J. Chakir, et al. 2013. IL-22 contributes to TGF-β1-mediated epithelial-mesenchymal transition in asthmatic bronchial epithelial cells. Respiratory Research 14: 118. https://doi.org/10.1186/1465-9921-14-118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sisto, M., L. Lorusso, R. Tamma, et al. 2019. Interleukin-17 and -22 synergy linking inflammation and EMT-dependent fibrosis in Sjögren’s syndrome. Clinical and Experimental Immunology 198: 261–272. https://doi.org/10.1111/cei.13337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nicolas, F.J., K. Lehmann, P.H. Warne, et al. 2003. Epithelial to mesenchymal transition in Madin-Darby canine kidney cells is accompanied by down-regulation of Smad3 expression, leading to resistance to transforming growth factor-beta-induced growth arrest. Journal of Biological Chemistry 278: 3251–3256. https://doi.org/10.1074/jbc.M209019200.

    Article  CAS  PubMed  Google Scholar 

  62. Iordanskaia, T., and A. Nawshad. 2011. Mechanisms of transforming growth factor beta induced cell cycle arrest in palate development. Journal Of Cellular Physiology 226: 1415–1424. https://doi.org/10.1002/jcp.22477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Buonato, J.M., I.S. Lan, and M.J. Lazzara. 2015. EGF augments TGFbeta-induced epithelial-mesenchymal transition by promoting SHP2 binding to GAB1. Journal of Cell Science 128: 3898–3909. https://doi.org/10.1242/jcs.169599.

    Article  CAS  PubMed  Google Scholar 

  64. Hu, Y., K. He, D. Wang, et al. 2013. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways. Carcinogenesis 34: 1764–1772. https://doi.org/10.1093/carcin/bgt132.

    Article  CAS  PubMed  Google Scholar 

  65. Song, J., and W. Shi. 2018. The concomitant apoptosis and EMT underlie the fundamental functions of TGF-β. Acta Biochimica et Biophysica Sinica 50: 91–97. https://doi.org/10.1093/abbs/gmx117.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (Funding No. 81870770 and 82170959).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. Y.H. and L.Z. conceived and designed the study. L.Z. and C.Z. completed most of the animal experiments. Y.H. and L.T. carried out cellular experiments. X.L. and P.W. analyzed the data. Y.H. wrote the original draft. L.G. and C.Z. reviewed and edited the manuscript. All authors have reviewed the final version of the manuscript and approved its submission for publishing.

Corresponding authors

Correspondence to Li Gao or Chuanjiang Zhao.

Ethics declarations

Ethics Approval

Animal experiments were approved by the Institutional Animal Care and Use Committee (IACUC), Sun Yat-sen University, Guangzhou, Guangdong, China (SYSU-IACUC-2021-000545). The human tissues we used were collected in the Hospital of Stomatology of Sun Yat-sen University, and the use of human tissues was approved by the Medical Ethics Committee of Hospital of Stomatology of Sun Yat-sen University (KQEC-2022-38-01). The study was performed in line with the principles of the Declaration of Helsinki.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 657 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhang, L., Tan, L. et al. Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis. Inflammation 46, 1871–1886 (2023). https://doi.org/10.1007/s10753-023-01847-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-023-01847-w

KEY WORDS

Navigation