Skip to main content
Log in

Deoxycholic Acid Promotes Pyroptosis in Free Fatty Acid-Induced Steatotic Hepatocytes by Inhibiting PINK1-Mediated Mitophagy

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Nonalcoholic steatohepatitis (NASH) is the inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), which can lead to liver fibrosis and cirrhosis. Bile acid levels are correlated with markers of hepatic injury in NASH, suggesting a possible role for bile acids in the progression of NAFLD. Here, we examined the role of deoxycholic acid (DCA) in driving steatotic hepatocytes to pyroptosis, a pro-inflammatory form of programmed cell death. HepG2 cells were stimulated with odium oleate and sodium palmitate for modeling steatotic hepatocytes and then treated with DCA alone or in combination with a specific mitophagy agonist, carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Our results showed that DCA dose-dependently induced a pro-inflammatory response in steatotic hepatocytes but had no significant effect on lipid accumulation. Moreover, activation of the NLRP3 inflammasome and pyroptosis were triggered by DCA. Expression levels of the mitophagy markers PTEN-induced kinase 1 (PINK1) and E3 ubiquitin ligase Parkin were significantly diminished by DCA, whereas induction of mitophagy by CCCP prevented DCA-induced inflammatory response and restored the pyroptosis. Collectively, our data showed that DCA-induced pyroptosis involves the inhibition of PINK1-mediated mitophagy and the activation of the NLRP3 inflammasome. These findings provide insight into the association of DCA with mitophagy, pyroptosis, and inflammation in NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The analyzed data sets generated during the present study will be provided by the corresponding author on reasonable request.

References

  1. Younossi, Z., F. Tacke, M. Arrese, B. Chander Sharma, I. Mostafa, E. Bugianesi, V. Wai-Sun Wong, Y. Yilmaz, J. George, J. Fan, and M.B. Vos. 2019. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 69: 2672–2682.

    Article  Google Scholar 

  2. Jia, W., M. Wei, C. Rajani, and X. Zheng. 2020. Targeting the alternative bile acid synthetic pathway for metabolic diseases. Protein & Cell 12: 411–425.

    Article  Google Scholar 

  3. Belgaumkar, A.P., R.P. Vincent, K.A. Carswell, R.D. Hughes, J. Alaghband-Zadeh, R.R. Mitry, C.W. Le Roux, and A.G. Patel. 2015. Changes in bile acid profile after laparoscopic sleeve gastrectomy are associated with improvements in metabolic profile and fatty liver disease. Obesity Surgery 26: 1195–1202.

    Article  Google Scholar 

  4. Yara, S.I., T. Ikegami, T. Miyazaki, M. Murakami, J. Iwamoto, T. Hirayama, M. Kohjima, M. Nakamuta, and A. Honda. 2019. Circulating bile acid profiles in Japanese patients with NASH. Gastroenterology and Hepatology 1: 302–310.

    Google Scholar 

  5. Thomas, C., R. Pellicciari, M. Pruzanski, J. Auwerx, and K. Schoonjans. 2008. Targeting bile-acid signalling for metabolic diseases. Nature Reviews Drug Discovery 7: 678–693.

    Article  CAS  Google Scholar 

  6. Aranha, M.M., H. Cortez-Pinto, A. Costa, I.B.M. Da Silva, M.E. Camilo, M.C. De Moura, and C.M.P. Rodrigues. 2008. Bile acid levels are increased in the liver of patients with steatohepatitis. European Journal of Gastroenterology and Hepatology 20: 519–525.

    Article  CAS  Google Scholar 

  7. Kwan, S.Y., J. Jiao, J. Qi, Y. Wang, P. Wei, J.B. Mccormick, S.P. Fisher-Hoch, and L. Beretta. 2020. Bile acid changes associated with liver fibrosis and steatosis in the Mexican-American population of South Texas. Hepatology Communications 4: 555–568.

    Article  CAS  Google Scholar 

  8. Puri, P., K. Daita, A. Joyce, F. Mirshahi, P.K. Santhekadur, S. Cazanave, V.A. Luketic, M.S. Siddiqui, S. Boyett, H.K. Min, D.P. Kumar, R. Kohli, H. Zhou, P.B. Hylemon, M.J. Contos, M. Idowu, and A.J. Sanyal. 2018. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67: 534–548.

    Article  CAS  Google Scholar 

  9. Nimer, N., I. Choucair, Z. Wang, I. Nemet, L. Li, J. Gukasyan, T. L. Weeks, N. Alkhouri, N. Zein, W. H. W. Tang, M. A. Fischbach, J. M. Brown, H. Allayee, S. Dasarathy, V. Gogonea and S. L. Hazen. 2021. Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression. Metabolism 116: 154457.

  10. Bader, M., Y. Nakade, R. Kitano, K. Sakamoto, S. Kimoto, T. Yamauchi, T. Inoue, Y. Kobayashi, T. Ohashi, Y. Sumida, K. Ito and M. Yoneda. 2021. Characteristics of bile acid composition in high fat diet-induced nonalcoholic fatty liver disease in obese diabetic rats. Plos One 16: e0247303.

  11. Suga, T., H. Yamaguchi, J. Ogura, S. Shoji, M. Maekawa and N. Mano. 2019. Altered bile acid composition and disposition in a mouse model of non-alcoholic steatohepatitis. Toxicology and Applied Pharmacology 379: 114664.

  12. Janssen, A.W.F., T. Houben, S. Katiraei, W. Dijk, L. Boutens, N. Van Der Bolt, Z. Wang, J.M. Brown, S.L. Hazen, S. Mandard, R. Shiri-Sverdlov, F. Kuipers, K. Willems Van Dijk, J. Vervoort, R. Stienstra, G.J.E.J. Hooiveld, and S. Kersten. 2017. Modulation of the gut microbiota impacts nonalcoholic fatty liver disease: A potential role for bile acids. Journal of Lipid Research 58: 1399–1416.

    Article  CAS  Google Scholar 

  13. Arrese, M., D. Cabrera, A.M. Kalergis, and A.E. Feldstein. 2016. Innate immunity and inflammation in NAFLD/NASH. Digestive Diseases and Sciences 61: 1294–1303.

    Article  CAS  Google Scholar 

  14. Abderrazak, A., T. Syrovets, D. Couchie, K. El Hadri, B. Friguet, T. Simmet, and M. Rouis. 2015. NLRP3 inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases. Redox Biology 4: 296–307.

    Article  CAS  Google Scholar 

  15. Csak, T., M. Ganz, J. Pespisa, K. Kodys, A. Dolganiuc, and G. Szabo. 2011. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 54: 133–144.

    Article  CAS  Google Scholar 

  16. Wen, H., D. Gris, Y. Lei, S. Jha, L. Zhang, M.T.-H. Huang, W.J. Brickey, and J.P.Y. Ting. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology 12: 408–415.

    Article  CAS  Google Scholar 

  17. Lamkanfi, M., and V.M. Dixit. 2010. Manipulation of host cell death pathways during microbial infections. Cell Host & Microbe 8: 44–54.

    Article  CAS  Google Scholar 

  18. Wree, A., M.D. Mcgeough, C.A. Pena, M. Schlattjan, H. Li, M.E. Inzaugarat, K. Messer, A. Canbay, H.M. Hoffman, and A.E. Feldstein. 2014. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. Journal of Molecular Medicine 92: 1069–1082.

    Article  CAS  Google Scholar 

  19. Xu, B., M. Jiang, Y. Chu, W. Wang, D. Chen, X. Li, Z. Zhang, D. Zhang, D. Fan, Y. Nie, F. Shao, K. Wu, and J. Liang. 2018. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. Journal of Hepatology 68: 773–782.

    Article  CAS  Google Scholar 

  20. Mridha, A.R., A. Wree, A.A.B. Robertson, M.M. Yeh, C.D. Johnson, D.M. Van Rooyen, F. Haczeyni, N.C. Teoh, C. Savard, G.N. Ioannou, S.L. Masters, K. Schroder, M.A. Cooper, A.E. Feldstein, and G.C. Farrell. 2017. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. Journal of Hepatology 66: 1037–1046.

    Article  CAS  Google Scholar 

  21. Sheng, L., P.K. Jena, Y. Hu, H.-X. Liu, N. Nagar, K.M. Kalanetra, S.W. French, S.W. French, D.A. Mills, and Y.-J.Y. Wan. 2017. Hepatic inflammation caused by dysregulated bile acid synthesis is reversible by butyrate supplementation. The Journal of Pathology 243: 431–441.

    Article  CAS  Google Scholar 

  22. Gaul, S., A. Leszczynska, F. Alegre, B. Kaufmann, C.D. Johnson, L.A. Adams, A. Wree, G. Damm, D. Seehofer, C.J. Calvente, D. Povero, T. Kisseleva, A. Eguchi, M.D. Mcgeough, H.M. Hoffman, P. Pelegrin, U. Laufs, and A.E. Feldstein. 2021. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis. Journal of Hepatology 74: 156–167.

    Article  CAS  Google Scholar 

  23. Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.

    Article  CAS  Google Scholar 

  24. Wu, J., X. Li, G. Zhu, Y. Zhang, M. He, and J. Zhang. 2016. The role of resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Experimental Cell Research 341: 42–53.

    Article  CAS  Google Scholar 

  25. Roberts, R.F., M.Y. Tang, E.A. Fon, and T.M. Durcan. 2016. Defending the mitochondria: The pathways of mitophagy and mitochondrial-derived vesicles. The International Journal of Biochemistry & Cell Biology 79: 427–436.

    Article  CAS  Google Scholar 

  26. Ashrafi, G., and T.L. Schwarz. 2013. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death and Differentiation 20: 31–42.

    Article  CAS  Google Scholar 

  27. Zhang, N.-P., X.-J. Liu, L. Xie, X.-Z. Shen, and J. Wu. 2019. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Laboratory Investigation 99: 749–763.

    Article  CAS  Google Scholar 

  28. Shi, D., X. Zhan, X. Yu, M. Jia, Y. Zhang, J. Yao, X. Hu, and Z. Bao. 2014. Inhibiting CB1 receptors improves lipogenesis in an in vitro non-alcoholic fatty liver disease model. Lipids in Health and Disease 13: 173.

    Article  Google Scholar 

  29. Qiu, T., P. Pei, X. Yao, L. Jiang, S. Wei, Z. Wang, J. Bai, G. Yang, N. Gao, L. Yang, S. Qi, R. Yan, X. Liu, and X. Sun. 2018. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death & Disease 9: 946.

    Article  Google Scholar 

  30. Sheka, A.C., O. Adeyi, J. Thompson, B. Hameed, P.A. Crawford, and S. Ikramuddin. 2020. Nonalcoholic steatohepatitis: A review. The Journal of the American Medical Association 323: 1175–1183.

    Article  CAS  Google Scholar 

  31. Manne, V., P. Handa, and K.V. Kowdley. 2018. Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clinics in Liver Disease 22: 23–37.

    Article  Google Scholar 

  32. Jiao, N., S.S. Baker, A. Chapa-Rodriguez, W. Liu, C.A. Nugent, M. Tsompana, L. Mastrandrea, M.J. Buck, R.D. Baker, R.J. Genco, R. Zhu, and L. Zhu. 2018. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67: 1881–1891.

    Article  CAS  Google Scholar 

  33. Amaral, J.D., R.J.S. Viana, R.M. Ramalho, C.J. Steer, and C.M.P. Rodrigues. 2009. Bile acids: Regulation of apoptosis by ursodeoxycholic acid. Journal of Lipid Research 50: 1721–1734.

    Article  CAS  Google Scholar 

  34. Péan, N., I. Doignon, and T. Tordjmann. 2013. Bile acids and liver carcinogenesis: TGR5 as a novel piece in the puzzle? Clinics and Research in Hepatology and Gastroenterology 37: 226–229.

    Article  Google Scholar 

  35. Zhang, N.-P., X.-J. Liu, L. Xie, X.-Z. Shen and J. Wu. 2019. Impaired mitophagy triggers NLRP3 inflammasome activation during the progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. Laboratory Investigation; a Journal of Technical Methods and Pathology 99: 749–763.

  36. Kang, X., H. Wang, Y. Li, Y. Xiao, L. Zhao, T. Zhang, S. Zhou, X. Zhou, Y. Li, Z. Shou, C. Chen, and B. Li. 2019. Alantolactone induces apoptosis through ROS-mediated AKT pathway and inhibition of PINK1-mediated mitophagy in human HepG2 cells. Artificial Cells Nanomedicine and Biotechnology 47: 1961–1970.

    Article  CAS  Google Scholar 

  37. Kubli, D.A., and Å.B. Gustafsson. 2012. Mitochondria and mitophagy: The yin and yang of cell death control. Circulation Research 111: 1208–1221.

    Article  CAS  Google Scholar 

  38. Liu, P., H. Lin, Y. Xu, F. Zhou, J. Wang, J. Liu, X. Zhu, X. Guo, Y. Tang and P. Yao. 2018. Frataxin-mediated PINK1-Parkin-dependent mitophagy in hepatic steatosis: the protective effects of quercetin. Molecular Nutrition & Food Research 62: e1800164.

  39. Chen, M.-Y., X.-J. Ye, X.-H. He, and D.-Y. Ouyang. 2021. The signaling pathways regulating NLRP3 inflammasome activation. Inflammation 44: 1229–1245.

    Article  CAS  Google Scholar 

  40. Cassel, S.L., S. Joly, and F.S. Sutterwala. 2009. The NLRP3 inflammasome: A sensor of immune danger signals. Seminars in Immunology 21: 194–198.

    Article  CAS  Google Scholar 

  41. Wree, A., A. Eguchi, M.D. Mcgeough, C.A. Pena, C.D. Johnson, A. Canbay, H.M. Hoffman, and A.E. Feldstein. 2014. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59: 898–910.

    Article  CAS  Google Scholar 

  42. Franchi, L., R. Muñoz-Planillo, and G. Núñez. 2012. Sensing and reacting to microbes through the inflammasomes. Nature Immunology 13: 325–332.

    Article  CAS  Google Scholar 

  43. González-Rodríguez, A., R. Mayoral, N. Agra, M. P. Valdecantos, V. Pardo, M. E. Miquilena-Colina, J. Vargas-Castrillón, O. Lo Iacono, M. Corazzari, G. M. Fimia, M. Piacentini, J. Muntané, L. Boscá, C. García-Monzón, P. Martín-Sanz and Á. M. Valverde. 2014. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death & Disease 5: e1179.

  44. Yang, L., P. Li, S. Fu, E.S. Calay, and G.S. Hotamisligil. 2010. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metabolism 11: 467–478.

    Article  CAS  Google Scholar 

  45. Madrigal-Matute, J., and A.M. Cuervo. 2016. Regulation of liver metabolism by autophagy. Gastroenterology 150: 328–339.

    Article  CAS  Google Scholar 

Download references

Funding

Discipline construction project of Guangdong Medical University (4SG21016G); Funds for PHD researchers of Guangdong Medical University in 2019 (B2019001).

Author information

Authors and Affiliations

Authors

Contributions

Xuebin Gao and Honghui Guo designed the study. Xuebin Gao, Xuan Zhu, Yan Xin, Xiaozhuan Lin, Xiang Li, and Meiqing Mai performed the experiments and analyzed the data. Xuebin Gao and Yongdui Ruan wrote the manuscript. Honghui Guo revised the manuscript.

Corresponding author

Correspondence to Honghui Guo.

Ethics declarations

Ethics Approval and Consent to Participate

This paper only contains in vitro studies and raises no ethical concerns.

Consent for Publication

All authors have approved to submit the manuscript to your journal for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Ruan, Y., Zhu, X. et al. Deoxycholic Acid Promotes Pyroptosis in Free Fatty Acid-Induced Steatotic Hepatocytes by Inhibiting PINK1-Mediated Mitophagy. Inflammation 45, 639–650 (2022). https://doi.org/10.1007/s10753-021-01573-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01573-1

KEY WORDS

Navigation