Skip to main content
Log in

In-gas-cell laser ionization spectroscopy at KISS

  • Conference Proceeding
  • Published:
Interactions Aims and scope Submit manuscript

Abstract

We have developed the KEK Isotope Separation System (KISS) at RIKEN to study the nuclear structure of the nuclei in the vicinity of neutron magic number \(N=\) 126 from the astrophysical perspective. These neutron-rich nuclei have been produced by using multinucleon transfer (MNT) reactions with combinations of the low-energy \(^{136}\)Xe beam and the production targets of W, Ir, and Pt. At the KISS facility, radioisotopes are ionized by applying in-gas-cell laser ionization technique. In this process, we can perform laser ionization spectroscopy of the refractory elements with the atomic number \(Z=\) 70–78 such as Hf, Ta, W, Re, Os, Ir, and Pt, which cannot be performed in other facilities. Laser spectroscopy can effectively investigate nuclear structure through the measured magnetic moments, isotope shifts (IS) \(\Delta \nu \), changes in the mean-square charge radii \(\delta <r^2>\), and quadrupole deformation parameters \(|<\beta ^2_2>|^{1/2}\). We have studied the ionization schemes of these elements through offline tests and performed in-gas-cell laser ionization spectroscopy of these refractory neutron-rich nuclei produced at KISS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Campbell, P., Moore, I.D., Pearson, M.R.: Prog. Part. Nucl. Phys. 86, 127 (2016)

    Article  ADS  CAS  Google Scholar 

  2. Yang, X.F., Wang, S.J., S.G., W., Garcia Ruiz, R.F.: Laser spectroscopy for the study of exotic nuclei. Prog. Part. Nucl. Phys. 129, 104005 (2023). https://doi.org/10.1016/j.ppnp.2022.104005

  3. Jeong, S.C., Imai, N., Ishiyama, H., Hirayama, Y., Miyatake, H., Watanabe, Y.X.: KISS: KEK isotope separation system for \({\beta }\)-decay spectroscopy : toward the full understanding of r-process nucleosynthesis (R &D program for upgrade of the TRIAC research capabilities). KEK report, 2010-2, (2010)

  4. Aoki, T., Hirayama, Y., Ishiyama, H., Jeong, S.C., Kimura, S., Makida, Y., Miyatake, H., Mukai, M., Nishimura, S., Nishio, K., Niwase, T., Ogawa, T., Okuno, H., Rosenbusch, M., Schury, P., Watanabe, Y.X., Wada, M.: Design report of the KISS-II facility for exploring the origin of uranium. KEK report, 2022-2. arXiv:2209.12649 (2022)

  5. Hirayama, Y., Watanabe, Y.X., Imai, N., Ishiyama, H., Jeong, S.C., Miyatake, H., Oyaizu, M., Kimura, S., Mukai, M., Kim, Y.H., Sonoda, T., Wada, M., Huyse, M., Kudryavtsev, Y., Van Duppen, P.: Laser ion source for multi-nucleon transfer reaction products. Nucl. Instrum. Methods Phys. Res. B 353, 4 (2015). https://doi.org/10.1016/j.nimb.2015.04.001

    Article  ADS  CAS  Google Scholar 

  6. Hirayama, Y., Watanabe, Y.X., Mukai, M., Oyaizu, M., Ahmed, M., Ishiyama, H., Jeong, S.C., Kakiguchi, Y., Kimura, S., Moon, J.Y., Park, J.H., Schury, P., Wada, M., Miyatake, H.: Doughnut-shaped gas cell for KEK isotope separation system. Nucl. Instrum. Methods Phys. Res. B 412, 11 (2017). https://doi.org/10.1016/j.nimb.2017.08.037

    Article  ADS  CAS  Google Scholar 

  7. Hirayama, Y., Watanabe, Y.X., Mukai, M., Schury, P., Ahmed, M., Ishiyama, H., Jeong, S.C., Kakiguchi, Y., Kimura, S., Moon, J.Y., Oyaizu, M., Park, J.H., Wada, M., Miyatake, H.: Nuclear spectroscopy of r-process nuclei using KEK isotope separation system. Nucl. Instrum. Methods Phys. Res. B 463, 425 (2020). https://doi.org/10.1016/j.nimb.2019.04.035

    Article  ADS  CAS  Google Scholar 

  8. Dasso, C.H., Pollarolo, G., Winther, A.: Systematics of isotope production with radioactive beams. Phys. Rev. Lett. 73, 1907 (1994). https://doi.org/10.1103/PhysRevLett.73.1907

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Watanabe, Y.X., Kim, Y.H., Jeong, S.C., Hirayama, Y., et al.: Pathway for the production of neutron-rich isotopes around \({N}=\) 126 shell closure. Phys. Rev. Lett. 115, 172503 (2015). https://doi.org/10.1103/PhysRevLett.115.172503

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hirayama, Y., Mukai, M., Watanabe, Y.X., et al.: In-gas-cell laser spectroscopy of the magnetic dipole moment of the \({N} \approx \) 126 isotope \(^{199}\)Pt. Phys. Rev. C 96, 014307 (2017). https://doi.org/10.1103/PhysRevC.96.014307

    Article  ADS  Google Scholar 

  11. Hirayama, Y., Mukai, M., Watanabe, Y.X., et al.: In-gas-cell laser resonance ionization spectroscopy of \(^{200,201}\)Pt. Phys. Rev. C 106, 034326 (2022). https://doi.org/10.1103/PhysRevC.106.034326

    Article  ADS  CAS  Google Scholar 

  12. Mukai, M., Hirayama, Y., Watanabe, Y.X., et al.: In-gas-cell laser resonance ionization spectroscopy of \(^{196,197,198}\)Ir. Phys. Rev. C 102, 054307 (2020). https://doi.org/10.1103/PhysRevC.102.054307

    Article  ADS  CAS  Google Scholar 

  13. Choi, H., Hirayama, Y., Choi, S., et al.: In-gas-cell laser ionization spectroscopy of \(^{194,196}\)Os isotopes by using a multireflection time-of-flight mass spectrograph. Phys. Rev. C 102, 034309 (2020). https://doi.org/10.1103/PhysRevC.102.034309

    Article  ADS  CAS  Google Scholar 

  14. Hirayama, Y., et al.: Efficient two-color two-step laser ionization schemes of \({\lambda }_1 \sim \) 250 nm and \({\lambda }_2 =\) 307.9 nm for heavy refractory elements –Measurements of ionization cross-sections and hyperfine spectra of tantalum and tungsten. Rev. Sci. Instrum. 90, 115104 (2019). https://doi.org/10.1063/1.5124444

  15. Mukai, M., Hirayama, Y., Watanabe, Y.X., Schury, P., et al.: High-efficiency and low-background multi-segmented proportional gas counter for \({\beta }\)-decay spectroscopy. Nucl. Instrum. Methods Phys. Res. A 884, 1 (2018). https://doi.org/10.1016/j.nima.2017.12.013

    Article  ADS  CAS  Google Scholar 

  16. Hirayama, Y., Schury, P., Mukai, M., et al.: Three-dimensional tracking multi-segmented proportional gas counter for \({\beta }\)-decay spectroscopy of unstable nuclei. Nucl. Instrum. Methods Phys. Res. A 997, 165152 (2021). https://doi.org/10.1016/j.nima.2021.165152

    Article  CAS  Google Scholar 

  17. Moon, J.Y., Hashimoto, T., Jeong, S.C., Wada, M., Schury, P., Watanabe, Y.X., Hirayama, Y., Ito, Y., Rosenbusch, M., Niwase, T., Wollnik, H., Miyatake, H.: RIKEN Accel. Prog. Rep. 53, 128 (2019)

    Google Scholar 

  18. Moon, J.Y., Jeong, S.C., Wada, M., Schury, P., Watanabe, Y.X., Hirayama, Y., Ito, Y., Rosenbusch, M., Kimura, S., Ishizawa, S., Niwase, T., Wollnik, H., Miyatake, H.: Development of multiple reflection time of flight mass spectrograph at KISS. RIKEN Accel. Prog. Rep. 52, 138 (2018)

    Google Scholar 

  19. Schury, P., Hashimoto, T., Ito, Y., Miyatake, H., Moon, J.Y., T., N., Hirayama, Y., Rosenbusch, M., Wada, M., Watanabe, Y.X., Wollnik, H. RIKEN Accel. Prog. Rep. 53, 115 (2019)

  20. Tajima, N., Suzuki, N.: Prolate dominance of nuclear shape caused by a strong interference between the effects of spin-orbit and \(l^2\) terms of the nilsson potential. Phys. Rev. C 64, 037301 (2001). https://doi.org/10.1103/PhysRevC.64.037301

    Article  ADS  CAS  Google Scholar 

  21. Takahara, S., Onishi, N., Shimizu, Y., Tajima, N.: The role of spin-orbit potential in nuclear prolate-shape dominance. Phys. Lett. B 702, 429 (2011). https://doi.org/10.1016/j.physletb.2011.07.030

    Article  ADS  CAS  Google Scholar 

  22. Sugawara, M.: Prolate-shape dominance and dual-shell mechanism. Phys. Rev. C 106, 024301 (2022). https://doi.org/10.1103/PhysRevC.106.024301

    Article  ADS  CAS  Google Scholar 

  23. Sarriguren, P., Rodríguez-Guzmán, R., Robledo, L.M.: Shape transitions in neutron-rich Yb, Hf, W, Os, and Pt isotopes within a Skyrme Hartree-Fock + BCS approach. Phys. Rev. C 77, 064322 (2008). https://doi.org/10.1103/PhysRevC.77.064322

    Article  ADS  CAS  Google Scholar 

  24. Robledo, L.M., Rodríguez-Guzmán, R., Sarriguren, P.: Role of triaxiality in the ground-state shape of neutron-rich Yb, Hf, W, Os and Pt isotopes. J. Phys. G 36, 115104 (2009). https://doi.org/10.1088/0954-3899/36/11/115104

    Article  ADS  CAS  Google Scholar 

  25. Nomura, K., et al.: Spectroscopic calculations of the low-lying structure in exotic Os and W isotopes. Phys. Rev. C 83, 054303 (2011). https://doi.org/10.1103/PhysRevC.83.054303

    Article  ADS  CAS  Google Scholar 

  26. Nomura, K., Rodríguez-Guzmán, R., Robledo, L.M.: Prolate-to-oblate shape phase transitions in neutron-rich odd-mass nuclei. Phys. Rev. C 97, 064314 (2018). https://doi.org/10.1103/PhysRevC.97.064314

    Article  ADS  CAS  Google Scholar 

  27. Yang, X.Q., Wang, L.J., Xiang, J., Wu, X.Y., Li, Z.P.: Microscopic analysis of prolate-oblate shape phase transition and shape coexistence in the Er-Pt region. Phys. Rev. C 103, 054321 (2021). https://doi.org/10.1103/PhysRevC.103.054321

    Article  ADS  CAS  Google Scholar 

  28. Ulm, G., Bhattacherjee, S.K., Dabkiewicz, P., Huber, G., Kluge, H.-J., Kühl, T., Lochmann, H., Otten, E.-W., Wendt, K.: Isotope shift of \(^{182}\)Hg and an update of nuclear moments and charge radii in the isotope range \(^{181}\)Hg-\(^{206}\)Hg. Z. Phys. A 325, 247 (1986). https://doi.org/10.1007/BF01294605

    Article  ADS  CAS  Google Scholar 

  29. http://www.nndc.bnl.gov

  30. Rodriguez, J., Bonn, J., Huber, G., Kluge, H.-J., Otten, E.W.: Determination of spin, magnetic moment and isotopic shift of neutron rich \(^{205}\)Hg by optical pumping. Z. Phys. A 272, 369 (1975). https://doi.org/10.1007/BF01440863

    Article  ADS  CAS  Google Scholar 

  31. Delaroche, J.-P., Girod, M., Libert, J., Goutte, H., Hilaire, S., Péru, S., Pillet, N., Bertsch, G.F.: Structure of even-even nuclei using a mapped collective Hamiltonian and the D1S Gogny interaction. Phys. Rev. C 81, 014303 (2010). https://doi.org/10.1103/PhysRevC.81.014303

    Article  ADS  CAS  Google Scholar 

  32. Möller, P., Sierk, A.J., Bengtsson, R., Sagawa, H., Ichikawa, T.: Nuclear shape isomers. At. Data and Nucl. Data Table 98, 149 (2012). https://doi.org/10.1016/j.adt.2010.09.002

    Article  ADS  CAS  Google Scholar 

  33. Watanabe, H., Watanabe, Y.X., Hirayama, Y., et al.: Beta decay of the axially asymmetric ground state of \(^{192}\)Re. Phys. Lett. B 814, 136088 (2021). https://doi.org/10.1016/j.physletb.2021.136088

    Article  CAS  Google Scholar 

  34. Bütttgenbach, S., Dicke, R., Gölz, G., Träber, F.: High precision hyperfine structure measurements in \(^{185}\)Re and \(^{187}\)Re. Z. Phys. A 302, 281 (1981). https://doi.org/10.1007/BF01414258

    Article  ADS  Google Scholar 

  35. Stone, N.J.: Table of nuclear magnetic dipole and electric quadrupole moments. At. Data and Nucl. Data Table 90, 75 (2005). https://doi.org/10.1016/j.adt.2005.04.001

    Article  ADS  CAS  Google Scholar 

  36. Niwase, T., Watanabe, Y.X., Hirayama, Y., et al.: Discovery of new isotope \(^{241}\)U and systematic high-precision atomic mass measurements of neutron-rich Pa-Pu nuclei produced via multinucleon transfer reactions. Phys. Rev. Lett. 130, 132502 (2023). https://doi.org/10.1103/PhysRevLett.130.132502

Download references

Acknowledgements

This experiment was performed at the RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. The authors wish to acknowledge the staff of the accelerator for their support. This work was supported by JSPS KAKENHI Grants No. JP23244060, No. JP24740180, No. JP26247044, No. JP15H02096, No. JP17H01132, No. JP17H06090, No. JP18H03711, No. JP20H00169, No. JP21H04479, and No. JP22H00136.

Funding

This work was supported by JSPS KAKENHI Grants No. JP23244060, No. JP24740180, No. JP26247044, No. JP15H02096, No. JP17H01132, No. JP17H06090, No. JP18H03711, No. JP20H00169, No. JP21H04479, and No. JP22H00136.

Author information

Authors and Affiliations

Authors

Contributions

Y.H. wrote the main manuscript text and prepared all figures. Y.H., M.M, Y.W, P.S., T.N., H.C., T.H., S.I., S.J., H.M., J.M., M.O., M.R., A.T., M.T., A.T., and M.W : data acquisition. Y.H., M.M., and H.C. : data analysis. H.N. : interpretation of data.

Corresponding author

Correspondence to Yoshikazu Hirayama.

Ethics declarations

Ethics approval

Ethical approval was not required for this study.

Competing of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirayama, Y., Mukai, M., Watanabe, Y. et al. In-gas-cell laser ionization spectroscopy at KISS. Hyperfine Interact 245, 41 (2024). https://doi.org/10.1007/s10751-024-01886-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10751-024-01886-1

Keywords

Navigation