Skip to main content

Advertisement

Log in

Ecosystem services provided by river-floodplain ecosystems

  • AQUATIC ECOSYSTEM SERVICES
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

River-floodplain ecosystems (RFEs) provide multiple ecosystem services. However, their importance may be underestimated because they are not summarized yet. In this paper, we review and update the benefits that RFEs provide to society, including supporting, regulating, provisioning, and cultural ecosystem services. Although considered a unique ecosystem service category, we advocate that supporting services, like soil formation, nutrient cycling, primary production, and habitat provisioning can be comprehended as ecosystem processes that generate other services. RFEs provide valuable regulating services, including water regulation, storm protection, erosion control, water purification, waste treatment, and disease control. The society also benefits from provisioning services from RFEs, such as water for drinking and irrigation, food (e.g., fishes and crops), fiber, ornamental and biochemical resources, and energy production. RFEs also provide cultural services including recreation, ecotourism, religiosity, and spirituality. Most ecosystem services from pristine and human-altered RFEs are primarily regulated by the flood pulse because it maintains temporal and spatial habitat variability, high biodiversity, and biotic and abiotic interactions. Despite providing many benefits to society, RFEs are seriously threatened, mainly due to river regulation, land-use changes, pollution and invasive species. Consequently, the multiple demands and uses of RFEs worldwide raise challenges of conservation and restoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Aalto, R., L. Maurice-Bourgoin, T. Dunne, D. R. Montgomery, C. A. Nittrouer & J. L. Guyot, 2003. Episodic sediment accumulation on Amazonian flood plains influenced by El Niño/Southern Oscillation. Nature 425: 493–497.

    Article  CAS  PubMed  Google Scholar 

  • Abril, G., J. M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J. H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim De Souza & F. Roland, 2014. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505: 395–398.

    Article  CAS  PubMed  Google Scholar 

  • Abunjara, F., 2007. Influências do controle de nível e transparência da água impostos pela formação do reservatório de Porto Primavera sobre peixes de diferentes categorias tróficas do alto rio Paraná. Universidade Estadual de Maringá.

  • Adelodun, A. A., U. O. Hassan & V. O. Nwachuckwu, 2020. Environmental, mechanical, and biochemical benefits of water hyacinth (Eichhornia crassipes). Environmental Science and Pollution Research 27: 30210–30221.

    Article  CAS  PubMed  Google Scholar 

  • Agostinho, A. A., S. M. Thomaz & L. C. Gomes, 2004. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. International Journal of Ecohydrology & Hydrobiology 4: 267–280.

    Google Scholar 

  • Agostinho, A. A., L. C. Gomes, N. C. L. Santos, J. C. G. Ortega & F. M. Pelicice, 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research 173: 26–36.

    Article  Google Scholar 

  • Agostinho, A. A., L. C. Gomes, S. Veríssimo & E. K. Okada, 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries 14: 11–19.

    Article  Google Scholar 

  • Akanbi, A. A., Y. Lian & D. T. Soong, 1999. An analysis on managed flood storage options for selected evees along the lower Illinois river for enhancing flood protection report no4: flood storage reservoirs and flooding on the Lower Illinois River. Contract Report 645.

  • Alford, J. N. & M. R. Walker, 2013. Managing the flood pulse for optimal fisheries production in the Atchafalaya River basin, Louisiana (USA). River Research and Applications 29: 279–296.

    Article  Google Scholar 

  • Alfredsen, K., P.-A. Amundsen, L. Hahn, P. M. Harrison, I. P. Helland, E. G. Martins, W. M. Twardek & M. Power, 2022. A synoptic history of the development, production and environmental oversight of hydropower in Brazil, Canada, and Norway. Hydrobiologia 849: 269–280.

    Article  Google Scholar 

  • Alho, C. J. R., 2008. Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation. Brazilian Journal of Biology 68: 957–966.

    Article  CAS  Google Scholar 

  • Alufasi, R., J. Gere, E. Chakauya, P. Lebea, W. Parawira & W. Chingwaru, 2017. Mechanisms of pathogen removal by macrophytes in constructed wetlands. Environmental Technology Reviews 6: 135–144.

    Article  CAS  Google Scholar 

  • Alves, J. C., G. F. Andreotti, A. A. Agostinho & L. C. Gomes, 2021. Effects of the El Niño Southern Oscillation (ENSO) on fish assemblages in a Neotropical floodplain. Hydrobiologia 848: 1811–1823.

    Article  Google Scholar 

  • Amaral, R. & J. Ross, 2020. A legislação e a gestão para redução de riscos relacionados a inundações no município de São Paulo/SP. Sociedade & Natureza 32: 501–514.

    Article  Google Scholar 

  • de Amo, V. E., J. Ernandes-Silva, D. A. Moi & R. P. Mormul, 2021. Hydrological connectivity drives the propagule pressure of Limnoperna fortunei (Dunker, 1857) in a tropical river–floodplain system. Hydrobiologia 848: 2043–2053.

    Article  Google Scholar 

  • Araújo-Lima, C. A. R. M., B. R. Forsberg, R. Victoria & L. Martinello, 1986. Energy Sources for Detritivorous Fishes in the Amazon. Science 234: 1256–1258.

    Article  PubMed  Google Scholar 

  • Baigún, C. R. M., A. Puig, P. G. Minotti, P. Kandus, R. Quintana, R. Vicari, R. Bo, N. O. Oldani & J. A. Nestler, 2008. Resource use in the Parana River Delta (Argentina): moving away from an ecohydrological approach? Ecohydrology and Hydrobiology 8: 245–262.

    Article  Google Scholar 

  • Bailly, D., A. A. Agostinho & H. I. Suzuki, 2008. Influence of the flood regime on the reproduction of fish species with different reproductive strategies in the Cuiabá River, Upper Pantanal, Brazil. River Research and Applications 24: 1218–1229.

    Article  Google Scholar 

  • Barbier, E. B. & J. R. Thompson, 1998. The value of water: floodplain versus large-scale irrigation benefits in Northern Nigeria. Ambio 27: 434–440.

    Google Scholar 

  • Barbosa, F. A. R., J. Padisák, E. L. G. Espíndola, G. Borics & O. Rocha, 1999. The cascading reservoir continuum concept (CRCC) and its application to the river Tietê-basin, São Paulo State, Brazil In Tundisi, J. G. & M. Straskraba (eds), Theoretical Reservoir Ecology and its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers: 425–437.

  • Barbosa, M. V. M., T. A. Fernandes, F. L. T. de Siqueira, G. B. Siqueira & P. B. de Morais, 2019. Spatial variability of the physicochemical properties of soils from seasonally flooded forest fragments on a tropical plain. Applied and Environmental Soil Science 2019: 1814837.

    Article  Google Scholar 

  • Barlow, C., E. Baran, A. S. Halls & M. Kshatriya, 2008. How much of the Mekong fish catch is at risk from mainstream dam development? Catch and Culture 14: 16–21.

    Google Scholar 

  • Baveye, P. C., J. Baveye & J. Gowdy, 2016. Soil “ecosystem” services and natural capital: critical appraisal of research on uncertain ground. Frontiers in Environmental Science 4: 1–49.

    Article  Google Scholar 

  • Begossi, A., 2014. Ecological, cultural, and economic approaches to managing artisanal fisheries. Environment, Development and Sustainability 16: 5–34.

    Article  Google Scholar 

  • Begossi, A., S. V. Salivonchyk, G. Hallwass, N. Hanazaki, P. F. M. Lopes, R. A. M. Silvano, D. Dumaresq & J. Pittock, 2019. Fish consumption on the Amazon: a review of biodiversity, hydropower and food security issues. Brazilian Journal of Biology 79: 345–357.

    Article  CAS  Google Scholar 

  • Bertassoli, D. J., A. O. Sawakuchi, H. O. Sawakuchi, F. N. Pupim, G. A. Hartmann, M. M. McGlue, C. M. Chiessi, M. Zabel, E. Schefuß, T. S. Pereira, R. A. Santos, S. B. Faustino, P. E. Oliveira & D. C. Bicudo, 2017. The fate of carbon in sediments of the Xingu and Tapajós clearwater rivers, eastern Amazon. Frontiers in Marine Science 4: 44.

    Article  Google Scholar 

  • Bhatt, A. G., A. Kumar & P. R. Trivedi, 2021. Integration of multivariate statistics and water quality indices to evaluate groundwater quality and its suitability in middle Gangetic floodplain. Bihar. SN Applied Sciences 3: 426.

    Article  CAS  Google Scholar 

  • Biedunkiewicz, A., E. Sucharzewska, K. Kulesza, K. Nowacka & D. Kubiak, 2020. Phyllosphere of Submerged Plants in Bathing Lakes as a Reservoir of Fungi—Potential Human Pathogens. Microbial Ecology 79: 552–561.

    Article  PubMed  Google Scholar 

  • Bini, L. M., 1996. Influence of flood pulse on the fitomass of three species of aquatic macrophytes in the Upper River Parana floodplain. Arquivos De Biologia e Tecnologia 39: 715–721.

    Google Scholar 

  • Borges, A. V., F. Darchambeau, C. R. Teodoru, T. R. Marwick, F. Tamooh, N. Geeraert, F. O. Omengo, F. Guérin, T. Lambert, C. Morana, E. Okuku & S. Bouillon, 2015. Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience 8: 637–642.

    Article  CAS  Google Scholar 

  • Bowen, Z. H., K. D. Bovee & T. J. Waddle, 2003. Effects of flow regulation on shallow-water habitat dynamics and floodplain connectivity. Dynamics and floodplain connectivity. Transactions of the American Fisheries Society 132: 809–823.

    Article  Google Scholar 

  • Boyd, J. W. & H. S. Banzhaf, 2005. Services and government accountability: the need for a new way of judging nature's value. Resources Summer: 16–19.

  • Bullock, A. & M. Acreman, 2003. The role of wetlands in the hydrological cycle. Hydrology and Earth System Sciences 7: 358–389.

    Article  Google Scholar 

  • Burdis, R. M. & R. J. H. Hoxmeier, 2011. Seasonal zooplankton dynamics in main channel and backwater habitats of the Upper Mississippi River. Hydrobiologia 667: 69–87.

    Article  Google Scholar 

  • Camargo, A. F. M. & F. A. Esteves, 1995. Influence of water level variation on fertilization of an oxbow lake of Rio Mogi-Guaçu, state of São Paulo, Brazil. Hydrobiologia 299: 185–193.

    Article  CAS  Google Scholar 

  • Carignan, R. & J. J. Neiff, 1992. Nutrient dynamics in the floodplain ponds of the Paraná River (Argentina) dominated by the water hyacinth Eichhornia crassipes. Biogeochemistry 17: 85–121.

    Article  CAS  Google Scholar 

  • Carvalho, P., L. M. Bini, S. M. Thomaz, L. G. de Oliveira, B. Robertson, W. L. G. Tavechio & A. J. Darwisch, 2001. Comparative limnology of South American floodplain lakes and lagoons. Acta Scientiarum 23: 265–273.

    Google Scholar 

  • Castello, L., V. J. Isaac & R. Thapa, 2015. Flood pulse effects on multispecies fishery yields in the Lower Amazon. Royal Society Open Science 2: 150299.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, F., W. Li, L. Castello, B. R. Murphy & S. Xie, 2015. Potential effects of dam cascade on fish: lessons from the Yangtze River. Reviews in Fish Biology and Fisheries 25: 569–585.

    Article  Google Scholar 

  • Cheng, H., A. Liang & Z. Zhi, 2017. Phosphorus distribution and retention in lacustrine wetland sediment cores of Lake Changshou in the Three Gorges Reservoir area. Environmental Earth Sciences 76: 425.

    Article  Google Scholar 

  • Chin, A., 2006. Urban transformation of river landscapes in a global context. Geomorphology 79: 460–487.

    Article  Google Scholar 

  • Chitu, Z., F. Tomei, G. Villani, A. Di Felice, G. Zampelli, I. C. Paltineanu, I. Visinescu, A. Dumitrescu, M. Bularda, D. Neagu, R. Costache & E. Luca, 2020. Improving irrigation scheduling using MOSES short-term irrigation forecasts and in situ water resources measurements on Alluvial soils of Lower Danube Floodplain. Romania. Water 12: 520.

    Article  Google Scholar 

  • Christine, P., S. Jerzy, W. Hanna & R. Krzysztof, 2005. Dynamic slowdown: a flood mitigation strategy complying with the integrated management concept – implementation in a small mountainous catchment. International Journal of River Basin Management 3: 75–85.

    Article  Google Scholar 

  • Ciria, M. P., M. L. Solano & P. Soriano, 2005. Role of macrophyte Typha latifolia in a constructed wetland for wastewater treatment and assessment of its potential as a biomass fuel. Biosystems Engineering 92: 535–544.

    Article  Google Scholar 

  • Clawson, R. G., B. G. Lockaby & B. Rummer, 2001. Changes in production and nutrient cycling across a wetness gradient within a floodplain forest. Ecosystems 4: 126–138.

    Article  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    Article  CAS  Google Scholar 

  • Conceição, E. O., J. Higuti, R. de Campos & K. Martens, 2018. Effects of flood pulses on persistence and variability of pleuston communities in a tropical floodplain lake. Hydrobiologia 807: 175–188.

    Article  Google Scholar 

  • Costanza, R., R. D’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R. V. O’Neill, J. Paruelo, R. G. Raskin, P. Sutton & M. van den Belt, 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.

    Article  CAS  Google Scholar 

  • Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S. J. Anderson, I. Kubiszewski, S. Farber & R. K. Turner, 2014. Changes in the global value of ecosystem services. Global Environmental Change 26: 152–158.

    Article  Google Scholar 

  • da Silva, C. V. F., A. Schardong, J. I. B. Garcia & C. de P. M. Oliveira, 2018. Climate change impacts and flood control measures for highly developed urban watersheds. Water 10: 829.

    Article  Google Scholar 

  • de Groot, R., L. Brander, S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, M. Christie, N. Crossman, A. Ghermandi, L. Hein, S. Hussain, P. Kumar, A. McVittie, R. Portela, L. C. Rodriguez, P. ten Brink & P. van Beukering, 2012. Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services 1: 50–61.

    Article  Google Scholar 

  • de Necker, L., R. Gerber, J. van Vuren, V. Wepener, N. J. Smit & L. Brendonck, 2022. Temporal dynamics of a subtropical floodplain pool after 2 years of supra-seasonal drought: a mesocosm study. Hydrobiologia 849: 795–815.

    Article  Google Scholar 

  • de Oliveira, A. G., T. M. Lopes, M. A. Angulo-Valencia, R. M. Dias, H. I. Suzuki, I. C. B. Costa & A. A. Agostinho, 2020. Relationship of freshwater fish recruitment with distinct reproductive strategies and flood attributes: a long-term view in the Upper Paraná River Floodplain. Frontiers in Environmental Science 8: 577181.

    Article  Google Scholar 

  • Deosti, S., F. D. Bomfim & F. A. Lansac-Tôha, 2021. Zooplankton taxonomic and functional structure is determined by macrophytes and fish predation in a Neotropical river. Hydrobiologia 848: 1475–1490.

    Article  Google Scholar 

  • Devercelli, M., Y. Z. de Domitrovic, M. E. Forastier & N. M. de Zaburlín, 2014. Phytoplankton of the Paraná River Basin. Advances in Limnology 65: 39–65.

    Article  Google Scholar 

  • Díaz, S., S. Demissew, J. Carabias, C. Joly, M. Lonsdale, N. Ash, A. Larigauderie, J. R. Adhikari, S. Arico, A. Báldi, A. Bartuska, I. A. Baste, A. Bilgin, E. Brondizio, K. M. A. Chan, V. E. Figueroa, A. Duraiappah, M. Fischer, R. Hill, T. Koetz, P. Leadley, P. Lyver, G. M. Mace, B. Martin-Lopez, M. Okumura, D. Pacheco, U. Pascual, E. S. Pérez, B. Reyers, E. Roth, O. Saito, R. J. Scholes, N. Sharma, H. Tallis, R. Thaman, R. Watson, T. Yahara, Z. A. Hamid, C. Akosim, Y. Al-Hafedh, R. Allahverdiyev, E. Amankwah, T. S. Asah, Z. Asfaw, G. Bartus, A. L. Brooks, J. Caillaux, G. Dalle, D. Darnaedi, A. Driver, G. Erpul, P. Escobar-Eyzaguirre, P. Failler, A. M. M. Fouda, B. Fu, H. Gundimeda, S. Hashimoto, F. Homer, S. Lavorel, G. Lichtenstein, W. A. Mala, W. Mandivenyi, P. Matczak, C. Mbizvo, M. Mehrdadi, J. P. Metzger, J. B. Mikissa, H. Moller, H. A. Mooney, P. Mumby, H. Nagendra, C. Nesshover, A. A. Oteng-Yeboah, G. Pataki, M. Roué, J. Rubis, M. Schultz, P. Smith, R. Sumaila, K. Takeuchi, S. Thomas, M. Verma, Y. Yeo-Chang & D. Zlatanova, 2015. The IPBES Conceptual Framework - connecting nature and people. Current Opinion in Environmental Sustainability 14: 1–16.

    Article  Google Scholar 

  • Diez, J. M., C. M. D’Antonio, J. S. Dukes, E. D. Grosholz, J. D. Olden, C. J. B. Sorte, D. M. Blumenthal, B. A. Bradley, R. Early, I. Ibáñez, S. J. Jones, J. J. Lawler & L. P. Miller, 2012. Will extreme climatic events facilitate biological invasions? Frontiers in Ecology and the Environment 10: 249–257.

    Article  Google Scholar 

  • dos Santos, M. J., M. A. F. S. Dias & E. D. Freitas, 2014. Influence of local circulations on wind, moisture, and precipitation close to Manaus city, Amazon region, Brazil. Journal of Geophysical Research: Atmospheres 119: 233–249.

    Google Scholar 

  • dos Santos, V. L. M., P. A. Catelani, A. C. Petry & É. M. P. Caramaschi, 2021. Hydrological alterations enhance fish invasions: lessons from a Neotropical coastal river. Hydrobiologia 848: 2383–2397.

    Article  Google Scholar 

  • Dugan, P. J., C. Barlow, A. A. Agostinho, E. Baran, G. F. Cada, D. Chen, I. G. Cowx, J. W. Ferguson, T. Jutagate, M. Mallen-Cooper, G. Marmulla, J. Nestler, M. Petrere, R. L. Welcomme & K. O. Winemiller, 2010. Fish migration, dams, and loss of ecosystem services in the Mekong basin. Ambio 39: 344–348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engelhardt, K. A. M. & M. E. Ritchie, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.

    Article  CAS  PubMed  Google Scholar 

  • Enriquez-Quiroz, J. F., A. R. Quero-Carrillo, A. Hernández-Garay & E. García-Moya, 2006. Azuche, Hymenachne amplexicaulis (Rudge) Nees, forage genetic resources for floodplains in tropical Mexico. Genetic Resources and Crop Evolution 53: 1405–1412.

    Article  Google Scholar 

  • Espinoza-Toledo, A., M. Mendoza-Carranza, M. M. Castillo, E. Barba-Macías & K. A. Capps, 2021. Taxonomic and functional responses of macroinvertebrates to riparian forest conversion in tropical streams. Science of the Total Environment 757: 143972.

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Carmona, N., S. Attwood, S. M. Cole, R. Remans & F. DeClerck, 2020. A gendered ecosystem services approach to identify novel and locally-relevant strategies for jointly improving food security, nutrition, and conservation in the Barotse Floodplain. International Journal of Agricultural Sustainability 18: 351–375.

    Article  Google Scholar 

  • Fernandes, R., A. A. Agostinho, E. A. Ferreira, C. S. Pavanelli, H. I. Suzuki, D. P. Lima & L. C. Gomes, 2009. Effects of the hydrological regime on the ichthyofauna of riverine environments of the Upper Paraná River floodplain. Brazilian Journal of Biology 69: 669–680.

    Article  CAS  Google Scholar 

  • Filoso, S. & M. A. Palmer, 2011. Assessing stream restoration effectiveness at reducing nitrogen export to downstream waters. Ecological Applications 21: 1989–2006.

    Article  PubMed  Google Scholar 

  • Fisher, B. & R. K. Turner, 2008. Ecosystem services: classification for valuation. Biological Conservation 141: 1167–1169.

    Article  Google Scholar 

  • Forbes, S. A., 1925. The Lake as a Microcosm. Illinois Natural History Survey Bulletin 15: 537–550.

    Article  Google Scholar 

  • Funk, A., J. Martínez-López, F. Borgwardt, D. Trauner, K. J. Bagstad, S. Balbi, A. Magrach, F. Villa & T. Hein, 2019. Identification of conservation and restoration priority areas in the Danube River based on the multi-functionality of river-floodplain systems. Science of the Total Environment 654: 763–777.

    Article  CAS  PubMed  Google Scholar 

  • Funk, A., M. Tschikof, B. Grüner, K. Böck, T. Hein & E. Bondar-Kunze, 2020. Analyzing the potential to restore the multi-functionality of floodplain systems by considering ecosystem service quality, quantity and trade-offs. River Research and Applications 37: 221–232.

    Article  Google Scholar 

  • Gilvear, D. J., C. J. Spray & R. Casas-Mulet, 2013. River rehabilitation for the delivery of multiple ecosystem services at the river network scale. Journal of Environmental Management 126: 30–43.

    Article  PubMed  Google Scholar 

  • Gomes, L. C. & A. A. Agostinho, 1997. Influence of the flooding regime on the nutritional state and juvenile recruitment of the curimba, Prochilodus scrofa Steindachner, in upper Paraná River, Brazil. Fisheries Management and Ecology 4: 263–274.

    Article  Google Scholar 

  • Grabowska, M., K. Glińska-Lewczuk, K. Obolewski, P. Burandt, S. Kobus, J. Dunalska, R. Kujawa, A. Goździejewska & A. Skrzypczak, 2014. Effects of hydrological and physicochemical factors on phytoplankton communities in floodplain lakes. Polish Journal of Environmental Studies 23: 713–725.

    CAS  Google Scholar 

  • Grygoruk, M., D. Mirosław-Światek, W. Chrzanowska & S. Ignar, 2013. How much for water? Economic assessment and mapping of floodplain water storage as a catchment-scale ecosystem service of Wetlands. Water 5: 1760–1779.

    Article  Google Scholar 

  • Haines-Young, R. & M. Potschin, 2010. The links between biodiversity, ecosystem services and human wellbeing. In Raffaelli, D. G. & C. L. J. Frid (eds), Ecosystem Ecology: A New Synthesis Cambridge University Press, Cambridge: 110–139.

    Chapter  Google Scholar 

  • Haines-Young, R. & M. Potschin, 2018. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. Nottingham, UK.

  • Henriot, C., D. Martak, Q. Cuenot, C. Loup, H. Masclaux, F. Gillet, X. Bertrand, D. Hocquet & G. Bornette, 2019. Occurrence and ecological determinants of the contamination of floodplain wetlands with Klebsiella pneumoniae and pathogenic or antibiotic-resistant Escherichia coli. FEMS Microbial Ecology 95: 97.

    Article  Google Scholar 

  • Hes, E. M. A., R. Yatoi, S. L. Laisser, A. K. Feyissa, K. Irvine, J. Kipkemboi & A. A. van Dam, 2021. The effect of seasonal flooding and livelihood activities on retention of nitrogen and phosphorus in Cyperus papyrus wetlands, the role of aboveground biomass. Hydrobiologia 848: 4135–4152.

    Article  CAS  Google Scholar 

  • Higuti, J. & K. Martens, 2016. Invasive South American floating plants are a successful substrate for native Central African pleuston. Biological Invasions 18: 1191–1201.

    Article  Google Scholar 

  • Homeier, J., D. Kurzatkowski & C. Leuschner, 2017. Stand dynamics of the drought-affected floodplain forests of Araguaia River, Brazilian Amazon. Forest Ecosystems 4: 10.

    Article  Google Scholar 

  • Hopkins, K. G., G. B. Noe, F. Franco, E. J. Pindilli, S. Gordon, M. J. Metes, P. R. Claggett, A. C. Gellis, C. R. Hupp & D. M. Hogan, 2018. A method to quantify and value floodplain sediment and nutrient retention ecosystem services. Journal of Environmental Management 220: 65–76.

    Article  CAS  PubMed  Google Scholar 

  • Houser, J. N. & W. B. Richardson, 2010. Nitrogen and phosphorus in the Upper Mississippi River: transport, processing, and effects on the river ecosystem. Hydrobiologia 640: 71–88.

    Article  CAS  Google Scholar 

  • IEA, 2020. Key World Energy Statistics. International Energy Agency. Paris, https://www.iea.org/reports/key-world-energy-statistics-2020.

  • IPCC, 2021. Summary for Policymakers In Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Mathews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu & B. Zhou (eds), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

  • Ivanov, I. V., V. E. Prikhodko, I. V. Zamotaev, D. V. Manakhov, E. Y. Novenko, P. I. Kalinin, L. M. Markova & A. L. Plaksina, 2019. Synlithogenic evolution of floodplain soils in valleys of small rivers in the trans-ural Steppe. Eurasian Soil Science 52: 593–609.

    Article  CAS  Google Scholar 

  • Jakubínský, J., M. Prokopová, P. Raška, L. Salvati, N. Bezak, O. Cudlín, J. Purkyt, P. Cudlín, P. Vezza, C. Camporeale, J. Daneˇk, M. Pástor & T. Lepeška, 2021. Managing floodplains using nature-based solutions to support multiple ecosystem functions and services. Wires Water 8: e1545.

    Article  Google Scholar 

  • Johnston, B. R., L. Hiwasaki, I. J. Klaver, A. R. Castillo & V. Strang, 2012. Water, cultural diversity, and global environmental change: emerging trends, sustainable futures? United Nations Educational, Scientific and Cultural Organization (UNESCO)/Springer, Jakarta/Netherlands.

  • Junk, W. J., M. T. F. Piedade, J. Schongart, M. Cohn-Haft, J. M. Adeney & F. Wittmann, 2011. A classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31: 623–640.

    Article  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Junk, W. J. & K. M. Wantzen, 2004. The flood pulse concept: new aspects, approaches and applications - an update. Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries 117–149.

  • Junk, W. J., K. Nunes da Cunha, S. M. Thomaz, A. A. Agostinho, F. A. Ferreira, E. E. de Souza Filho, J. C. Stevaux, J. C. B. da Silva, P. C. Rocha & K. Kawakita, 2021. Macrohabitat classification of wetlands as a powerful tool for management and protection: the example of the Paraná River floodplain, Brazil. Ecohydrology & Hydrobiology 21: 411–424.

    Article  Google Scholar 

  • Kawalko, D., P. Jezierski & C. Kabala, 2021. Morphology and physicochemical properties of alluvial soils in riparian forests after river regulation. Forests 12: 329.

    Article  Google Scholar 

  • Keckeis, S., C. Baranyi, T. Hein, C. Holarek, P. Riedler & F. Schiemer, 2003. The significance of zooplankton grazing in a floodplain system of the River Danube. Journal of Plankton Research 25: 243–253.

    Article  Google Scholar 

  • Keddy, P. A., 2000. Wetland Ecology: principles and conservation, Cambridge University Press, New York:

    Google Scholar 

  • Keller, P. S., R. Marcé, B. Obrador & M. Koschorreck, 2021. Global carbon budget of reservoirs is overturned by the quantification of drawdown areas. Nature Geoscience 14: 402–408.

    Article  CAS  Google Scholar 

  • Klaver, I. J., 2012. Placing Water and Culture In Johnston, B., L. Hiwasaki, I. J. Klaver, A. R. Castillo, & V. Strang (eds), Water, Cultural Diversity, and Global Environmental Change. United Nations Educational, Scientific and Cultural Organization/Springer, Jakarta/Netherlands. pp. 9–20.

  • Koschke, L., C. Lorz, C. Fürst, T. Lehmann & F. Makeschin, 2014. Assessing hydrological and provisioning ecosystem services in a case study in Western Central Brazil. Ecological Processes 3: 2.

    Article  Google Scholar 

  • Kuehne, L. M., M. C. Hicks, B. Wamsley & J. D. Olden, 2022. Twenty year contrast of non-native parrotfeather distribution and abundance in an unregulated river. Hydrobiologia 849: 899–911.

    Article  CAS  Google Scholar 

  • Kumar, D., 2017. River Ganges-Historical, cultural and socioeconomic attributes. Aquatic Ecosystem Health and Management 20: 8–20.

    Article  Google Scholar 

  • Kurashov, E. A., E. V. Fedorova, J. V. Krylova & G. G. Mitrukova, 2016. Assessment of the Potential Biological Activity of Low Molecular Weight Metabolites of Freshwater Macrophytes with QSAR. Scientifica 2016: 1205680.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lair, G. J., F. Zehetner, M. Fiebig, M. H. Gerzabek, C. A. M. van Gestel, T. Hein, S. Hohensinner, P. Hsu, K. C. Jones, G. Jordan, A. A. Koelmans, A. Poot, D. M. E. Slijkerman, K. U. Totsche, E. Bondar-Kunze & J. A. C. Barth, 2009. How do long-term development and periodical changes of river-floodplain systems affect the fate of contaminants? Results from European rivers. Environmental Pollution 157: 3336–3346.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. H. W., C. H. C. Chan, C. P. Kuang, P. Clark, N. Townsend & W. Y. Shiu, 2008. Hydraulic model study of the Tai Hang Tung Storage Scheme. Journal of Hydraulic Research 46: 11–23.

    Article  Google Scholar 

  • Leopold, L. B., 1969. Quantitative Comparison of some aesthetic factors among rivers, U.S. Geological Survey, Washington:

    Book  Google Scholar 

  • Liao, K. H., 2012. A theory on urban resilience to floods - A basis for alternative planning practices. Ecology and Society 17: 48.

    Article  Google Scholar 

  • Lindholm, M., D. O. Hessen, K. Mosepele & P. Wolski, 2007. Food webs and energy fluxes on a seasonal floodplain: the influence of flood size. Wetlands 27: 775–784.

    Article  Google Scholar 

  • Lira, T. M. & M. P. S. R. Chaves, 2016. Comunidades ribeirinhas na Amazônia: organização sociocultural e política. Interações 17: 66–76.

    Google Scholar 

  • Loreau, M. & A. Hector, 2001. Partitioning selection and complementarity in biodiversity experiments. Nature 412: 72–76.

    Article  CAS  PubMed  Google Scholar 

  • Lu, L., A. S. Denning, M. A. da Silva-Dias, P. da Silva-Dias, M. Longo, S. R. Freitas & S. Saatchi, 2005. Mesoscale circulations and atmospheric CO2 variations in the Tapajós Region, Pará, Brazil. Journal of Geophysical Research Atmospheres 110: D21102.

    Article  Google Scholar 

  • Maltby, E. & M. C. Acreman, 2011. Ecosystem services of wetlands: pathfinder for a new paradigm. Hydrological Sciences Journal 56: 1341–1359.

    Article  Google Scholar 

  • Marcinek, A. A. & C. A. Hunt, 2019. Tourism and cultural commons in the Ecuadorian Amazon. Journal of Tourism and Cultural Change 17: 449–466.

    Article  Google Scholar 

  • Marengo, J. A., A. P. Cunha, L. A. Cuartas, K. R. Deusdará Leal, E. Broedel, M. E. Seluchi, C. M. Michelin, C. F. De Praga Baião, E. Chuchón Ângulo, E. K. Almeida, M. L. Kazmierczak, N. P. A. Mateus, R. C. Silva & F. Bender, 2021. Extreme Drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Frontiers in Water 3: 639204.

    Article  Google Scholar 

  • Massaroli, B. A. R., J. M. Araújo, J. C. G. Ortega, A. Valle Nunes, L. Mateus, S. E. Silva & J. Penha, 2021. Temporal dynamic and economic valuation of recreational fisheries of the lower Cuiabá River, Brazilian Pantanal. Fish Manag Ecol 28: 328–337.

    Article  Google Scholar 

  • Matthews, N., 2012. Drowning Under Progress: Water, Culture, and Development in the Greater Mekong Subregion In Johnston, B. R., L. Hiwasaki, I. J. Klaver, A. R. Castillo, & V. Strang (eds), Water, Cultural Diversity, and Global Environmental Change. United Nations Educational, Scientific and Cultural Organization/Springer, Jakarta/Netherlands: 349–366.

  • Matzek, V., D. Lewis, A. O’Geen, M. Lennox, S. D. Hogan, S. T. Feirer, V. Eviner & K. W. Tate, 2020. Increases in soil and woody biomass carbon stocks as a result of rangeland riparian restoration. Carbon Balance and Management 15: 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MEA – Millennium Ecosystem Assessement, 2003. Ecosystems and human well-being: a framework for assessment./Millennium Ecosystem Assessment; authors, Joseph Alcamo [et al.]; contributing authors, Elena M. Bennet [et al.]. World Resources Institute, Washington, DC.

  • MEA, 2005. Ecosystems and human well-being: synthesis, Island Press, Washington, DC:

    Google Scholar 

  • Meyer, A., C. Grac, I. Combroux, L. Schmitt & M. Trémolières, 2021. Biological feedback of unprecedented hydromorphological side channel restoration along the Upper Rhine (France). Hydrobiologia 848: 1593–1609.

    Article  Google Scholar 

  • Ming, J., L. Xian-guo, X. Lin-shu, C. Li-juan & T. Shouzheng, 2007. Flood mitigation benefit of wetland soil - a case study in Momoge National Nature Reserve in China. Ecological Economics 61: 217–223.

    Article  Google Scholar 

  • Mitsch, W. J., B. Bernal & M. E. Hernandez, 2015. Ecosystem services of wetlands. International Journal of Biodiversity Science, Ecosystem Services and Management 11: 1–4.

    Article  Google Scholar 

  • Moi, D. A., H. B. A. Evangelista, R. P. Mormul, L. R. Evangelista & S. M. Thomaz, 2021. Ecosystem multifunctionality and stability are enhanced by macrophyte richness in mesocosms. Aquatic Sciences 83: 53.

    Article  Google Scholar 

  • Morgan, M., 2012. Cultural Flows: Asserting Indigenous Rights and Interests in the Waters of the Murray-Darling River System, Australia In Johnston, B. R., L. Hiwasaki, I. J. Klaver, A. R. Castillo & V. Strang (eds), Water, Cultural Diversity, and Global Environmental Change. United Nations Educational, Scientific and Cultural Organization (UNESCO)/ Springer, Jakarta/Netherlands: 453–466.

  • Mori, S., T. Pacetti, L. Brandimarte, R. Santolini & E. Caporali, 2021. A methodology for assessing spatio-temporal dynamics of flood regulating services. Ecological Indicators 129: 107963.

    Article  Google Scholar 

  • Müller, N., & S. Okuda, 1998. Invasion of alien plants in floodplains - a comparison of Europe and Japan In Starfinger, U., K. Edwards, I. Kowarik & M. Williamson (eds), Plant Invasions: ecological mechanisms and human responses. Backhuys Publishers, Leiden, pp. 321–332.

  • Murray-Hudson, M., P. Wolski, F. Murray-Hudson, M. T. Brown & K. Kashe, 2014. Disaggregating hydroperiod: components of the seasonal flood pulse as drivers of plant species distribution in floodplains of a tropical wetland. Wetlands 34: 927–942.

    Article  Google Scholar 

  • Musara, C. & E. B. Aladejana, 2020. Typha capensis (Rohrb.) N.E.Br. (Typhaceae): morphology, medicinal uses, biological and chemical properties. Plant Science Today 7: 578–583.

    CAS  Google Scholar 

  • Naselli-Flores, L. & J. Padisák, 2022. Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia in press.

  • Neiff, J. J., 1990. Ideas para la interpretación ecologica del Paraná. Interciencia 15: 424–441.

    Google Scholar 

  • Neiff, J. J. & A. S. G. Neiff, 2003. Connectivity processes as a basis for the management of aquatic plants. In Thomaz, S. M. & L. M. Bini (eds) Ecologia e manejo de macrófitas aquáticas. Maringá, Eduem. pp. 39–58.Nixon, S. W., 2003. Replacing the Nile: are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a Great River? Ambio 32: 30–39.

  • Oliveira Junior, J. C., S. A. C. Furquim, A. F. Nascimento, R. M. Beirigo, L. Barbiero, V. Valles, E. G. Couto & P. Vidal-Torrado, 2019. Salt-affected soils on elevated landforms of an alluvial megafan, northern Pantanal, Brazil. Catena 172: 819–830.

    Article  CAS  Google Scholar 

  • Ondiek, R. A., N. Kitaka & S. O. Oduor, 2016. Assessment of provisioning and cultural ecosystem services in natural wetlands and rice fields in Kano floodplain, Kenya. Ecosystem Services 21: 166–173.

    Article  Google Scholar 

  • Opperman, J. J., G. E. Galloway, J. Fargione, J. F. Mount, B. D. Richter & S. Secchi, 2009. Sustainable floodplains through large-scale reconnection to rivers. Science 326: 1487–1488.

    Article  CAS  PubMed  Google Scholar 

  • Opperman, J. J., R. Luster, B. A. McKenney, M. Roberts & A. W. Meadows, 2010. Ecologically functional floodplains: connectivity, flow regime, and scale. Journal of the American Water Resources Association 1: 1–16.

    Google Scholar 

  • Padial, A. A. & S. M. Thomaz, 2006. Effects of flooding regime upon the decomposition of Eichhornia azurea (Sw.) Kunth measured on a tropical flow-regulated floodplain (Paraná River, Brazil). River Research and Applications 22: 791–801.

    Article  Google Scholar 

  • Pan, B.-Z., H.-J. Wang, X.-M. Liang & H.-Z. Whang, 2011. Macrozoobenthos in Yangtze floodplain lakes: patterns of density, biomass, and production in relation to river connectivity. Freshwater Science 30: 589–602.

    Google Scholar 

  • Pascual, U., P. Balvanera, S. Díaz, G. Pataki, E. Roth, M. Stenseke, R. T. Watson, E. Başak Dessane, M. Islar, E. Kelemen, V. Maris, M. Quaas, S. M. Subramanian, H. Wittmer, A. Adlan, S. E. Ahn, Y. S. Al-Hafedh, E. Amankwah, S. T. Asah, P. Berry, A. Bilgin, S. J. Breslow, C. Bullock, D. Cáceres, H. Daly-Hassen, E. Figueroa, C. D. Golden, E. Gómez-Baggethun, D. González-Jiménez, J. Houdet, H. Keune, R. Kumar, K. Ma, P. H. May, A. Mead, P. O’Farrell, R. Pandit, W. Pengue, R. Pichis-Madruga, F. Popa, S. Preston, D. Pacheco-Balanza, H. Saarikoski, B. B. Strassburg, M. van den Belt, M. Verma, F. Wickson & N. Yagi, 2017. Valuing nature’s contributions to people: the IPBES approach. Current Opinion in Environmental Sustainability 26–27: 7–16.

    Article  Google Scholar 

  • Pedrozo, F. & C. Bonetto, 1987. Nitrogen and phosphorus transport in the Bernejo River (South America). Revue D’hydrobiologie Tropicale 20: 91–99.

    Google Scholar 

  • Pelicice, F. M. & A. A. Agostinho, 2005. Perspectives on ornamental fisheries in the upper Paraná River floodplain, Brazil. Fisheries Research 72: 109–119.

    Article  Google Scholar 

  • Piedade, M. T. F., W. J. Junk & S. P. Long, 1991. The Productivity of the C4 Grass Echinochloa polystachya on the Amazon Floodplain. Ecology 72: 1456–1463.

    Article  Google Scholar 

  • Pignatello, J. J., 1990. Slowly reversible sorption of aliphatic halocarbons in soils. I. Formation of residual fractions. Environmental Toxicology and Chemistry 9: 1107–1115.

    Article  CAS  Google Scholar 

  • Pithart, D., K. Křováková, J. Žaloud́k, T. Dostál, J. Valentová, P. Valenta, J. Weyskrabová & J. Dušek, 2010. Ecosystem services of natural floodplain segment - Lužnice River, Czech Republic. WIT Transactions on Ecology and the Environment 133: 129–139.

    Article  Google Scholar 

  • Pozzobom, U. M., V. L. Landeiro, M. T. D. Brito, J. Alahuhta & J. Heino, 2021. Multiple facets of macrophyte beta diversity are shaped by environmental factors, directional spatial processes, and connectivity across tropical floodplain lakes in the dry season. Hydrobiologia 848: 3587–3602.

    Article  Google Scholar 

  • Pretty, J. N., B. Adams, F. Berkes, S. F. de Athayde, N. Dudley, E. Hunnf, L. Maffi, K. Milton, D. Rapport, P. Robbins, E. Sterling, S. Stolton, A. Tsing, E. Vintinner & S. Pilgrim, 2009. The intersections of biological diversity and cultural diversity: towards integration. Conservation and Society 7: 100–112.

    Article  Google Scholar 

  • Reusch, T. B. H., A. Ehlers, A. Hämmerli & B. Worm, 2005. Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America 102: 2826–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinku, S. & G. Singh, 2019. Climate change Impacts on the Ganga River ecosystem services: challenges for the well-being of millions. Climate Change and Environmental Sustainability 7: 108–117.

    Article  Google Scholar 

  • Roberto, M. C., N. F. Santana & S. M. Thomaz, 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Brazilian Journal of Biology 69: 717–725.

    Article  CAS  Google Scholar 

  • Rodrigues, C. B. & B. Prideaux, 2018. A management model to assist local communities developing community-based tourism ventures: a case study from the Brazilian Amazon. Journal of Ecotourism 17: 1–19.

    Article  Google Scholar 

  • Roosevelt, A. C., 1999. The development of prehistoric complex societies: Amazonia, a tropical forest. Archeological Papers of the American Anthropological Association 9: 2–33.

    Google Scholar 

  • Sampaio, A., J. Aguiar-Santos, H. Anjos, C. Freitas & F. Siqueira-Souza, 2019. Length-weight relationships of ornamental fish from floodplain lakes in the Solimões River basin (Iranduba, Amazonas, Brazil). Revista Colombiana De Ciencia Animal - RECIA 11: 733.

    Article  Google Scholar 

  • Sánchez-Ribas, J., J. Oliveira-Ferreira, J. E. Gimnig, C. Pereira-Ribeiro, M. S. A. Santos-Neves & T. F. Silva-Do-Nascimento, 2017. Environmental variables associated with anopheline larvae distribution and abundance in Yanomami villages within unaltered areas of the Brazilian Amazon. Parasites and Vectors 10: 571.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders, L. M., K. H. Taffs, D. J. Stokes, C. J. Sanders, J. M. Smoak, A. Enrich-Prast, P. A. Macklin, I. R. Santos & H. Marotta, 2017. Carbon accumulation in Amazonian floodplain lakes: a significant component of Amazon budgets? Limnology and Oceanography Letters 2: 29–35.

    Article  Google Scholar 

  • Sanon, S., T. Hein, W. Douven & P. Winkler, 2012. Quantifying ecosystem service trade-offs: the case of an urban floodplain in Vienna, Austria. Journal of Environmental Management 30: 59–72.

    Google Scholar 

  • Santos, M. J., D. Medvigy, M. A. F. Silva Dias, E. D. Freitas & H. Kim, 2019. Seasonal flooding causes intensification of the river breeze in the central Amazon. Journal of Geophysical Research: Atmospheres 124: 5178–5197.

    Article  Google Scholar 

  • Schindler, S., Z. Sebesvari, C. Damm, K. Euller, V. Mauerhofer, A. Schneidergruber, M. Biró, F. Essl, R. Kanka, S. G. Lauwaars, C. Schulz-Zunkel, T. van der Sluis, M. Kropik, V. Gasso, A. Krug, M. T. Pusch, K. P. Zulka, W. Lazowski, C. Hainz-Renetzeder, K. Henle & T. Wrbka, 2014. Multifunctionality of floodplain landscapes: relating management options to ecosystem services. Landscape Ecology 29: 229–244.

    Article  Google Scholar 

  • Schomburg, A., D. Sebag, P. Turberg, E. P. Verrecchia, C. Guenat, P. Brunner, T. Adatte, R. Schlaepfer & R. C. Le Bayon, 2019. Composition and superposition of alluvial deposits drive macro-biological soil engineering and organic matter dynamics in floodplains. Geoderma 355: 113899.

    Article  CAS  Google Scholar 

  • Schönbrunner, I. M., S. Preiner & T. Hein, 2012. Impact of drying and re-flooding of sediment on phosphorus dynamics of river-floodplain systems. Science of the Total Environment 432: 329–337.

    Article  PubMed  Google Scholar 

  • Shah, T., C. Ray & U. Lele, 2018. How to clean up the Ganges? Science 362: 503.

    Article  CAS  PubMed  Google Scholar 

  • Shankar, B., A. Halls & J. Barr, 2005. The effects of surface water abstraction for rice irrigation on floodplain fish production in Bangladesh. International Journal of Water 3: 61–83.

    Article  Google Scholar 

  • Silva, C. J & J. A. F. Silva, 1995. No ritmo das águas do Pantanal. Nupaub-Usp, 134 p.

  • Silva, A. L. & A. Begossi, 2009. Biodiversity, food consumption and ecological niche dimension: a study case of the riverine populations from the Rio Negro, Amazonia, Brazil. Environment, Development and Sustainability 11: 489–507.

    Article  Google Scholar 

  • Smith, N. J. H., 1985. The impact of cultural and ecological change on Amazonian fisheries. Biological Conservation 32: 355–373.

    Article  Google Scholar 

  • Sousa, W. T. Z., 2011. Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem. Hydrobiologia 669: 1–20.

    Article  Google Scholar 

  • Sposito, G., 1989. The Chemistry of Soils, Oxford University Press, New York:

    Google Scholar 

  • Talbot, C. J., E. M. Bennett, K. Cassell, D. M. Hanes, E. C. Minor, H. Paerl, P. A. Raymond, R. Vargas, P. G. Vidon, W. Wollheim & M. A. Xenopoulos, 2018. The impact of flooding on aquatic ecosystem services. Biogeochemistry 141: 439–461.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tariq, M. A. U. R., Z. Rajabi & N. Muttil, 2021. An evaluation of risk-based agricultural land-use adjustments under a flood management strategy in a floodplain. Hydrology 8: 53.

    Article  Google Scholar 

  • Teodoru, C. R., F. C. Nyoni, A. V. Borges, F. Darchambeau, I. Nyambe & S. Bouillon, 2015. Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12: 2431–2453.

    Article  Google Scholar 

  • Thomaz, S. M., T. A. Pagioro, L. M. Bini, M. do C. Roberto & R. R. A. Rocha, 2004. Limnology of the Upper Paraná River floodplain: patterns of spatio-temporal variations and influence of the water levels In Agostinho, A. A., L. Rodrigues, L. C. Gomes, S. M. Thomaz, & L. E. Miranda (eds), Structure and functioning of the Paraná River and its floodplain. EDUEM, Maringá: 37–42

  • Thomaz, S. M., L. M. Bini & R. L. Bozelli, 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia 579: 1–13.

    Article  Google Scholar 

  • Thomaz, S. M., 2022a. Ecosystem services provided by freshwater macrophytes. Hydrobiologia. https://doi.org/10.1007/s10750-021-04739-y.

    Article  Google Scholar 

  • Thomaz, S. M., 2022b. Propagule pressure and environmental filters related to non-native species success in river-floodplain ecosystems. Hydrobiologia. https://doi.org/10.1007/s10750-021-04624-8.

    Article  Google Scholar 

  • Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.

    Article  Google Scholar 

  • Tockner, K. & J. V. Ward, 1999. Biodiversity along riparian corridors. Large Rivers 11: 293–310.

    Google Scholar 

  • Tockner, K. & J. A. Stanford, 2002. Riverine flood plains: Present state and future trends. Environmental Conservation 29: 308–330.

    Article  Google Scholar 

  • Tonella, L. H., R. Fugi, O. B. Vitorino, H. I. Suzuki, L. C. Gomes & A. A. Agostinho, 2018. Importance of feeding strategies on the long-term success of fish invasions. Hydrobiologia 817: 239–252.

    Article  Google Scholar 

  • Turner, N. J. & H. Clifton, 2009. "It’s so different today”: Climate change and indigenous lifeways in British Columbia, Canada. Global Environmental Change 19: 180–190.

    Article  Google Scholar 

  • UNU-INWEH, 2013. Water Security & the Global Water Agenda. The UN-Water analytical brief. UN-WATER. Ontario.

  • Vaikasas, S. & A. Dumbrauskas, 2010. Self-purification process and retention of nitrogen in floodplains of River Nemunas. Hydrology Research 41: 338–345.

    Article  CAS  Google Scholar 

  • Vieira, M. C., J. C. G. Ortega, L. C. G. Vieira, L. F. M. Velho & L. M. Bini, 2022. Evidence that dams promote biotic differentiation of zooplankton communities in two Brazilian reservoirs. Hydrobiologia 849: 697–709.

    Article  Google Scholar 

  • Verde, E. J. S. R. C., L. S. Corrêa & C. L. S. Lima, 2021. Festivais amazônicos e universidade: experiências em um projeto de extensão. REH-Revista Educação e Humanidades 2: 483–493.

    Google Scholar 

  • Walalite, T., S. C. Dekker, F. M. Keizer, I. Kardel, P. P. Schot, S. M. DeJong & M. J. Wassen, 2016. Flood water hydrochemistry patterns suggest floodplain sink function for dissolved solids from the Songkhram Monsoon River (Thailand). Wetlands 36: 995–1008.

    Article  Google Scholar 

  • Wallace, K. J., 2007. Classification of ecosystem services: Problems and solutions. Biological Conservation 139: 235–246.

    Article  Google Scholar 

  • Walling, D. E., D. Fang, A. P. Nicholas & R. J. Sweet, 2006. River flood plains as carbon sinks. Sediment Dynamics and the Hydromorphology of Fluvial Systems 460–470.

  • Wantzen, K. M., A. Ballouche, I. Longuet, I. Bao, H. Bocoum, L. Cissé, M. Chauhan, P. Girard, B. Gopal, A. Kane, M. R. Marchese, P. Nautiyal, P. Teixeira & M. Zalewski, 2016. River Culture: An eco-social approach to mitigate the biological and cultural diversity crisis in riverscapes. Ecohydrology and Hydrobiology 16: 7–18.

    Article  Google Scholar 

  • Ward, J. V., K. Tockner & F. Schiemer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research & Management 15: 125–139.

    Article  Google Scholar 

  • Ward, J. V., K. Tockner, D. B. Arcott & C. Claret, 2002. Riverine landscape diversity. Freshwater Biology 47: 517–539.

    Article  Google Scholar 

  • Webb, J. R., I. R. Santos, D. T. Maher, B. Macdonald, B. Robson, P. Isaac & I. McHugh, 2018. Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual cycle. Agricultural and Forest Meteorology 260–261: 262–272.

    Article  Google Scholar 

  • Welcomme, R., 2008. World prospects for floodplain fisheries. Ecohydrology & Hydrobiology 8: 169–182.

    Article  Google Scholar 

  • Zanon, J. E., 2021. Annual cycle dampening and decrease in predictability of water level fluctuations in a dam-regulated Neotropical floodplain. Hydrobiologia 848: 4477–4491.

    Article  Google Scholar 

  • Zehetner, F., G. J. Lair, M. Graf & M. H. Gerzabek, 2009. Rates of biogeochemical phosphorus and copper redistribution in young floodplain soils. Biogeosciences 6: 2949–2956.

    Article  CAS  Google Scholar 

  • Zhang, W., T. H. Ricketts, C. Kremen, K. Carney & S. M. Swinton, 2007. Ecosystem services and dis-services to agriculture. Ecological Economics 64: 253–260.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting DKP postdoctoral funding (Process no. 163816/2020-4) and a Research Productivity Grant to SMT. We thank Coordination for the Improvement of Higher Education Personnel (CAPES) for granting postdoctoral funding to VMC. We also would like to thank Geovani Arnhold Moresco for designing the figure.

Funding

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting DKP postdoctoral funding (Process no. 163816/2020-4) and by a postdoctoral grant from Coordination for the Improvement of Higher Education Personnel (CAPES) to VMC.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: Thomaz, SM literature search, draft manuscript preparation and critical revision: Petsch, DK; Cionek, VM, Thomaz, SM; Santos, NCL.

Corresponding author

Correspondence to Vivian de Mello Cionek.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors reviewed the results and approved the final version of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling editor: Koen Martens.

Guest editors: Verónica Ferreira, Luis Mauricio Bini, Katya E. Kovalenko, Andre A. Padial, Judit Padisák & María de los Ángeles González Sagrario / Aquatic Ecosystem Services

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petsch, D.K., Cionek, V.d., Thomaz, S.M. et al. Ecosystem services provided by river-floodplain ecosystems. Hydrobiologia 850, 2563–2584 (2023). https://doi.org/10.1007/s10750-022-04916-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-022-04916-7

Keywords

Navigation