Skip to main content

Advertisement

Log in

Predictive biomarkers for the early detection and management of heart failure

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Cardiovascular disease (CVD) is a serious public health concern whose incidence has been on a rise and is projected by the World Health Organization to be the leading global cause of mortality by 2030. Heart failure (HF) is a complicated syndrome resulting from various CVDs of heterogeneous etiologies and exhibits varying pathophysiology, including activation of inflammatory signaling cascade, apoptosis, fibrotic pathway, and neuro-humoral system, thereby leading to compromised cardiac function. During this process, several biomolecules involved in the onset and progression of HF are released into circulation. These circulating biomolecules could serve as unique biomarkers for the detection of subclinical changes and can be utilized for monitoring disease severity. Hence, it is imperative to identify these biomarkers to devise an early predictive strategy to stop the deterioration of cardiac function caused by these complex cellular events. Furthermore, measurement of multiple biomarkers allows clinicians to divide HF patients into sub-groups for treatment and management based on early health outcomes. The present article provides a comprehensive overview of current omics platform available for discovering biomarkers for HF management. Some of the existing and novel biomarkers for the early detection of HF with special reference to endothelial biology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Zuchi C, Tritto I, Carluccio E et al (2020) Role of endothelial dysfunction in heart failure. Heart Fail Rev 25:21–30. https://doi.org/10.1007/s10741-019-09881-3

    Article  CAS  PubMed  Google Scholar 

  2. Chioncel O, Lainscak M, Seferovic PM et al (2017) Epidemiology and one-year outcomes in patients with chronic heart failure and preserved, mid-range and reduced ejection fraction: an analysis of the ESC Heart Failure Long-Term Registry. Eur J Heart Fail 19:1574–1585. https://doi.org/10.1002/ejhf.813

    Article  CAS  PubMed  Google Scholar 

  3. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18:891–975. https://doi.org/10.1002/ejhf.592

    Article  PubMed  Google Scholar 

  4. Hernandez AF, Greiner MA, Fonarow GC (2010) Relationship between early physician follow-up and 30-day readmission among medicare beneficiaries hospitalized for heart failure. JAMA 303:1716–1722. https://doi.org/10.1001/jama.2010.533

    Article  CAS  PubMed  Google Scholar 

  5. Chen LM, Jha AK, Guterman S (2010) Hospital cost of care, quality of care, and readmission rates: penny wise and pound foolish? Arch Intern Med 170:340–346. https://doi.org/10.1001/archinternmed.2009.511

    Article  PubMed  Google Scholar 

  6. Chun S, Tu JV, Wijeysundera HC (2012) Lifetime analysis of hospitalizations and survival of patients newly admitted with heart failure. Circ Heart Fail 5:414–421. https://doi.org/10.1161/CIRCHEARTFAILURE.111.964791

    Article  PubMed  PubMed Central  Google Scholar 

  7. Desai AS, Stevenson LW (2012) Rehospitalization for heart failure: predict or prevent? Circulation 126:501–506. https://doi.org/10.1161/CIRCULATIONAHA.112.125435

    Article  PubMed  Google Scholar 

  8. Friedrich EB, Böhm M (2007) Management of end stage heart failure. Heart 93:626–631. https://doi.org/10.1136/hrt.2006.098814

    Article  PubMed  PubMed Central  Google Scholar 

  9. Berliner D, Bauersachs J (2017) Current drug therapy in chronic heart failure: the New Guidelines of the European Society of Cardiology (ESC). Korean Circ J 47:543–554. https://doi.org/10.4070/kcj.2017.0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schwinger RHG (2021) Pathophysiology of heart failure. Cardiovasc Diagn Ther 11:263–276. https://doi.org/10.21037/cdt-20-302

  11. Kurmani S, Squire I (2017) Acute heart failure: definition, classification and epidemiology. Curr Heart Fail Rep 14:385–392. https://doi.org/10.1007/s11897-017-0351-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Polyakova EA, Mikhaylov EN, Sonin DL (2021) Neurohumoral, cardiac and inflammatory markers in the evaluation of heart failure severity and progression. J Geriatr Cardiol 18:47–66. https://doi.org/10.11909/j.issn.1671-5411.2021.01.007

  13. Giannitsi S, Bougiakli M, Bechlioulis A, Naka K (2019) Endothelial dysfunction and heart failure: a review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc Dis 8. https://doi.org/10.1177/2048004019843047

  14. Cao Z, Jia Y, Zhu B (2019) BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int J Mol Sci 20. https://doi.org/10.3390/ijms20081820

  15. Iqbal N, Wentworth B, Choudhary R (2012) Cardiac biomarkers: new tools for heart failure management. Cardiovasc Diagn Ther 2:147–164. https://doi.org/10.3978/j.issn.2223-3652.2012.06.03

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nadar SK, Shaikh MM (2019) Biomarkers in routine heart failure clinical care. Card Fail Rev 5:50–56. https://doi.org/10.15420/cfr.2018.27.2

  17. Badianyama M, Mpanya D, Adamu U et al (2022) New biomarkers and their potential role in heart failure treatment optimisation-an African perspective. J Cardiovasc Dev Dis 9:335. https://doi.org/10.3390/jcdd9100335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maalouf R, Bailey S (2016) A review on B-type natriuretic peptide monitoring: assays and biosensors. Heart Fail Rev 21:567–578. https://doi.org/10.1007/s10741-016-9544-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Daniels LB, Maisel AS (2007) Natriuretic peptides. J Am Coll Cardiol 50:2357–2368. https://doi.org/10.1016/j.jacc.2007.09.021

    Article  CAS  PubMed  Google Scholar 

  20. Nakagawa O, Ogawa Y, Itoh H (1995) Rapid transcriptional activation and early mRNA turnover of brain natriuretic peptide in cardiocyte hypertrophy. Evidence for brain natriuretic peptide as an “emergency” cardiac hormone against ventricular overload. J Clin Invest 96:1280–1287. https://doi.org/10.1172/JCI118162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kerkelä R, Ulvila J, Magga J (2015) Natriuretic peptides in the regulation of cardiovascular physiology and metabolic events. J Am Heart Assoc 4:e002423. https://doi.org/10.1161/JAHA.115.002423

  22. Omar HR, Guglin M (2016) Discharge BNP is a stronger predictor of 6-month mortality in acute heart failure compared with baseline BNP and admission-to-discharge percentage BNP reduction. Int J Cardiol 221:1116–1122. https://doi.org/10.1016/j.ijcard.2016.07.117

    Article  PubMed  Google Scholar 

  23. Luchner A, Hengstenberg C, Löwel H (2005) Effect of compensated renal dysfunction on approved heart failure markers

  24. Packer M (2018) Leptin-aldosterone-neprilysin axis: identification of its distinctive role in the pathogenesis of the three phenotypes of heart failure in people with obesity. Circulation 137:1614–1631. https://doi.org/10.1161/CIRCULATIONAHA.117.032474

    Article  CAS  PubMed  Google Scholar 

  25. Ibrahim NE, McCarthy CP, Shrestha S (2019) Effect of neprilysin inhibition on various natriuretic peptide assays. J Am Coll Cardiol 73:1273–1284. https://doi.org/10.1016/j.jacc.2018.12.063

    Article  CAS  PubMed  Google Scholar 

  26. Daniels LB, Clopton P, Bhalla V (2006) How obesity affects the cut-points for B-type natriuretic peptide in the diagnosis of acute heart failure: results from the Breathing Not Properly Multinational Study. Am Heart J 151:999–1005. https://doi.org/10.1016/j.ahj.2005.10.011

    Article  CAS  PubMed  Google Scholar 

  27. Shrivastava A, Haase T, Zeller T, Schulte C (2020) Biomarkers for heart failure prognosis: proteins, genetic scores and non-coding RNAs

  28. Stolfo D, Stenner E, Merlo M (2017) Prognostic impact of BNP variations in patients admitted for acute decompensated heart failure with in-hospital worsening renal function. Heart Lung Circ 26:226–234. https://doi.org/10.1016/j.hlc.2016.06.1205

    Article  CAS  PubMed  Google Scholar 

  29. Update | Cardiac biomarkers and heart failure

  30. van Kimmenade RR, Januzzi JL, Ellinor PT et al (2006) Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol 48:1217–1224. https://doi.org/10.1016/j.jacc.2006.03.061

    Article  CAS  PubMed  Google Scholar 

  31. Imran TF, Shin HJ, Mathenge N et al (2017) Meta-analysis of the usefulness of plasma galectin-3 to predict the risk of mortality in patients with heart failure and in the general population. Am J Cardiol 119:57–64. https://doi.org/10.1016/j.amjcard.2016.09.019

    Article  CAS  PubMed  Google Scholar 

  32. Jiang J, Yang B, Sun Y (2022) Diagnostic value of serum concentration of galectin-3 in patients with heart failure with preserved ejection fraction. Front Cardiovasc Med 8

  33. Ho JE, Liu C, Lyass A (2012) Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol 60:1249–1256. https://doi.org/10.1016/j.jacc.2012.04.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prognostic role of cardiac troponin in heart failure

  35. Thygesen K, Alpert JS, White HD (2007) Universal definition of myocardial infarction. J Am Coll Cardiol 50. https://doi.org/10.1016/j.jacc.2007.09.011

  36. Peacock WF, Marco T, Fonarow GC (2008) Cardiac troponin and outcome in acute heart failure. N Engl J Med 358:2117–2126. https://doi.org/10.1056/NEJMoa0706824

    Article  CAS  PubMed  Google Scholar 

  37. Chow SL, Maisel AS, Anand I et al (2017) Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation 135. https://doi.org/10.1161/CIR.0000000000000490

  38. Binas D, Daniel H, Richter A et al (2018) The prognostic value of sST2 and galectin-3 considering different aetiologies in non-ischaemic heart failure. Open Heart 5:e000750. https://doi.org/10.1136/openhrt-2017-000750

  39. Vallejo-Vaz AJ, Cardiovascular Sciences, Cardiovascular and Cell Sciences Research Institute, St George’s University of London, London, UK (2015) Novel biomarkers in heart failure beyond natriuretic peptides – the case for soluble ST2. Eur Cardiol Rev 10:37. https://doi.org/10.15420/ecr.2015.10.01.37

  40. Thupakula S, Nimmala SSR, Ravula H et al (2022) Emerging biomarkers for the detection of cardiovascular diseases. Egypt Heart J 74:77. https://doi.org/10.1186/s43044-022-00317-2

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nayeem MA (2018) Role of oxylipins in cardiovascular diseases. Acta Pharmacol Sin 39:1142–1154. https://doi.org/10.1038/aps.2018.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakagawa Y, Nishikimi T, Kuwahara K (2019) Atrial and brain natriuretic peptides: Hormones secreted from the heart. Peptides 111:18–25. https://doi.org/10.1016/j.peptides.2018.05.012

    Article  CAS  PubMed  Google Scholar 

  43. Hara A, Niwa M, Kanayama T et al (2020) Galectin-3: a potential prognostic and diagnostic marker for heart disease and detection of early stage pathology. Biomolecules 10:1277. https://doi.org/10.3390/biom10091277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Slack RJ, Mills R, Mackinnon AC (2021) The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int J Biochem Cell Biol 130:105881. https://doi.org/10.1016/j.biocel.2020.105881

  45. Su J-H, Luo M-Y, Liang N et al (2021) Interleukin-6: a novel target for cardio-cerebrovascular diseases. Front Pharmacol 12:745061. https://doi.org/10.3389/fphar.2021.745061

  46. Behbodikhah J, Ahmed S, Elyasi A et al (2021) Apolipoprotein B and cardiovascular disease: biomarker and potential therapeutic target. Metabolites 11:690. https://doi.org/10.3390/metabo11100690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shrivastava A, Haase T, Zeller T, Schulte C (2020) Biomarkers for heart failure prognosis: proteins, genetic scores and non-coding RNAs. Front Cardiovasc Med 7. https://doi.org/10.3389/fcvm.2020.601364

  48. Schumacher SM, Naga Prasad SV (2018) Tumor necrosis factor-α in heart failure: an updated review. Curr Cardiol Rep 20:117. https://doi.org/10.1007/s11886-018-1067-7

    Article  PubMed  PubMed Central  Google Scholar 

  49. Rolski F, Błyszczuk P (2020) Complexity of TNF-α signaling in heart disease. JCM 9:3267. https://doi.org/10.3390/jcm9103267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou J, Chen X, Chen W et al (2021) Comprehensive plasma metabolomic and lipidomic analyses reveal potential biomarkers for heart failure. Mol Cell Biochem 476:3449–3460. https://doi.org/10.1007/s11010-021-04159-5

    Article  CAS  PubMed  Google Scholar 

  51. Ortmayr K, Dubuis S, Zampieri M (2019) Metabolic profiling of cancer cells reveals genome-wide crosstalk between transcriptional regulators and metabolism. Nat Commun 10:1841. https://doi.org/10.1038/s41467-019-09695-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Hunter WG, Kelly JP, McGarrah RW et al (2016) Metabolomic profiling identifies novel circulating biomarkers of mitochondrial dysfunction differentially elevated in heart failure with preserved versus reduced ejection fraction: evidence for shared metabolic impairments in clinical heart failure. J Am Heart Assoc 5:e003190. https://doi.org/10.1161/JAHA.115.003190

  53. Andersson C, Liu C, Cheng S et al (2020) Metabolomic signatures of cardiac remodelling and heart failure risk in the community. ESC Heart Failure 7:3707–3715. https://doi.org/10.1002/ehf2.12923

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang C-H, Cheng M-L, Liu M-H (2018) Amino acid-based metabolic panel provides robust prognostic value additive to b-natriuretic peptide and traditional risk factors in heart failure. Dis Markers 2018:1–11. https://doi.org/10.1155/2018/3784589

    Article  CAS  Google Scholar 

  55. Ding M, Rexrode KM (2020) A review of lipidomics of cardiovascular disease highlights the importance of isolating lipoproteins. Metabolites 10:163. https://doi.org/10.3390/metabo10040163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ganna A, Salihovic S, Sundström J et al (2014) Large-scale metabolomic profiling identifies novel biomarkers for incident coronary heart disease. PLoS Genet 10:e1004801. https://doi.org/10.1371/journal.pgen.1004801

  57. Liu C, Zong W, Zhang A et al (2018) Lipidomic characterisation discovery for coronary heart disease diagnosis based on high-throughput ultra-performance liquid chromatography and mass spectrometry. RSC Adv 8:647–654. https://doi.org/10.1039/C7RA09353E

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Tang H-Y, Wang C-H, Ho H-Y et al (2018) Lipidomics reveals accumulation of the oxidized cholesterol in erythrocytes of heart failure patients. Redox Biol 14:499–508. https://doi.org/10.1016/j.redox.2017.10.020

    Article  CAS  PubMed  Google Scholar 

  59. Rong J, He T, Zhang J et al (2022) Serum lipidomics reveals phosphatidylethanolamine and phosphatidylcholine disorders in patients with myocardial infarction and post-myocardial infarction-heart failure. In Review

  60. Adamo L, Yu J, Rocha-Resende C et al (2020) Proteomic signatures of heart failure in relation to left ventricular ejection fraction. J Am Coll Cardiol 76:1982–1994. https://doi.org/10.1016/j.jacc.2020.08.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ferreira JP, Verdonschot J, Collier T et al (2019) Proteomic bioprofiles and mechanistic pathways of progression to heart failure: the HOMAGE Study. Circ: Heart Fail 12:e005897. https://doi.org/10.1161/CIRCHEARTFAILURE.118.005897

  62. Bayes-Genis A, Liu PP, Lanfear DE et al (2020) Omics phenotyping in heart failure: the next frontier. Eur Heart J 41:3477–3484. https://doi.org/10.1093/eurheartj/ehaa270

    Article  CAS  PubMed  Google Scholar 

  63. Stenemo M, Nowak C, Byberg L et al (2018) Circulating proteins as predictors of incident heart failure in the elderly: circulating proteins as predictors of incident heart failure. Eur J Heart Fail 20:55–62. https://doi.org/10.1002/ejhf.980

    Article  CAS  PubMed  Google Scholar 

  64. Shen L, Gan M, Tan Z et al (2018) A novel class of tRNA-derived small non-coding RNAs respond to myocardial hypertrophy and contribute to Intergenerational inheritance. Biomolecules 8:54. https://doi.org/10.3390/biom8030054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang ZY, Li PF, Li ZQ et al (2021) Altered expression of transfer-RNA-derived small RNAs in human with rheumatic heart disease. Front Cardiovasc Med 8:716716. https://doi.org/10.3389/fcvm.2021.716716

  66. Wang J, Han B, Yi Y et al (2021) Expression profiles and functional analysis of plasma tRNA-derived small RNAs in children with fulminant myocarditis. Epigenomics 13:1057–1075. https://doi.org/10.2217/epi-2021-0109

    Article  CAS  PubMed  Google Scholar 

  67. Lu E, Wu L, Chen B et al (2023) Maternal serum tRNA-derived fragments (tRFs) as potential candidates for diagnosis of fetal congenital heart disease. J Cardiovasc Dev Dis 10:78. https://doi.org/10.3390/jcdd10020078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zou Y, Yang Y, Fu X et al (2021) The regulatory roles of aminoacyl-tRNA synthetase in cardiovascular disease. Mol Ther Nucleic Acids 25:372–387. https://doi.org/10.1016/j.omtn.2021.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Taylor RW, Pyle A, Griffin H et al (2014) Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA 312:68–77. https://doi.org/10.1001/jama.2014.7184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Götz A, Tyynismaa H, Euro L et al (2011) Exome sequencing identifies mitochondrial alanyl-tRNA synthetase mutations in infantile mitochondrial cardiomyopathy. Am J Hum Genet 88:635–642. https://doi.org/10.1016/j.ajhg.2011.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang M, Sips P, Khin E et al (2016) Wars2 is a determinant of angiogenesis. Nat Commun 7:12061. https://doi.org/10.1038/ncomms12061

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Agnew T, Goldsworthy M, Aguilar C et al (2018) A Wars2 mutant mouse model displays OXPHOS deficiencies and activation of tissue-specific stress response pathways. Cell Rep 25:3315-3328.e6. https://doi.org/10.1016/j.celrep.2018.11.080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang K, Liu F, Zhou L-Y et al (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388. https://doi.org/10.1161/CIRCRESAHA.114.302476

    Article  CAS  PubMed  Google Scholar 

  74. Chu Q, Li A, Chen X et al (2018) Overexpression of miR-135b attenuates pathological cardiac hypertrophy by targeting CACNA1C. Int J Cardiol 269:235–241. https://doi.org/10.1016/j.ijcard.2018.07.016

    Article  PubMed  Google Scholar 

  75. Gomes CPC, Schroen B, Kuster GM et al (2020) Regulatory RNAs in heart failure. Circulation 141:313–328. https://doi.org/10.1161/CIRCULATIONAHA.119.042474

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chen F, Yang J, Li Y, Wang H (2018) Circulating microRNAs as novel biomarkers for heart failure. Hellenic J Cardiol 59:209–214. https://doi.org/10.1016/j.hjc.2017.10.002

    Article  PubMed  Google Scholar 

  77. Vicens Q, Westhof E (2014) Biogenesis of circular RNAs. Cell 159:13–14. https://doi.org/10.1016/j.cell.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  78. Du WW, Yang W, Chen Y et al (2017) Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J 38:1402–1412. https://doi.org/10.1093/eurheartj/ehw001

    Article  CAS  PubMed  Google Scholar 

  79. Zhang Q, Sun W, Han J et al (2020) The circular RNA hsa_circ_0007623 acts as a sponge of microRNA-297 and promotes cardiac repair. Biochem Biophys Res Commun 523:993–1000. https://doi.org/10.1016/j.bbrc.2019.12.116

    Article  CAS  PubMed  Google Scholar 

  80. Xia L, Song M (2020) Role of non-coding RNA in diabetic cardiomyopathy. Adv Exp Med Biol 1229:181–195. https://doi.org/10.1007/978-981-15-1671-9_10

    Article  CAS  PubMed  Google Scholar 

  81. Wang K, Long B, Liu F et al (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37:2602–2611. https://doi.org/10.1093/eurheartj/ehv713

    Article  CAS  PubMed  Google Scholar 

  82. Liu X, Wang M, Li Q et al (2022) CircRNA ACAP2 induces myocardial apoptosis after myocardial infarction by sponging miR-29. Minerva Med 113:128–134. https://doi.org/10.23736/S0026-4806.20.06600-8

  83. Li H, Xu J-D, Fang X-H et al (2020) Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res 116:1323–1334. https://doi.org/10.1093/cvr/cvz215

    Article  CAS  PubMed  Google Scholar 

  84. Garikipati VNS, Verma SK, Cheng Z et al (2019) Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun 10:4317. https://doi.org/10.1038/s41467-019-11777-7

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Sun L-Y, Zhao J-C, Ge X-M et al (2020) Circ_LAS1L regulates cardiac fibroblast activation, growth, and migration through miR-125b/SFRP5 pathway. Cell Biochem Funct 38:443–450. https://doi.org/10.1002/cbf.3486

    Article  CAS  PubMed  Google Scholar 

  86. Zhao Z, Li X, Gao C et al (2017) Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep 7:39918. https://doi.org/10.1038/srep39918

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  87. Vilades D, Martínez-Camblor P, Ferrero-Gregori A et al (2020) Plasma circular RNA hsa_circ_0001445 and coronary artery disease: performance as a biomarker. FASEB J 34:4403–4414. https://doi.org/10.1096/fj.201902507R

    Article  CAS  PubMed  Google Scholar 

  88. Werfel S, Nothjunge S, Schwarzmayr T et al (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107. https://doi.org/10.1016/j.yjmcc.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  89. Zeng Y, Du WW, Wu Y et al (2017) A Circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics 7:3842–3855. https://doi.org/10.7150/thno.19764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sun Y, Jiang X, Lv Y et al (2020) Circular RNA expression profiles in plasma from patients with heart failure related to platelet activity. Biomolecules 10:187. https://doi.org/10.3390/biom10020187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sonnenschein K, Wilczek AL, de Gonzalo-Calvo D et al (2019) Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci Rep 9:20350. https://doi.org/10.1038/s41598-019-56617-2

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  92. Han J, Zhang L, Hu L et al (2020) Circular RNA-expression profiling reveals a potential role of Hsa_circ_0097435 in heart failure via sponging multiple microRNAs. Front Genet 11:212. https://doi.org/10.3389/fgene.2020.00212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thum T, Galuppo P, Wolf C et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267. https://doi.org/10.1161/CIRCULATIONAHA.107.687947

    Article  CAS  PubMed  Google Scholar 

  94. Carè A, Catalucci D, Felicetti F et al (2007) MicroRNA-133 controls cardiac hypertrophy. Nat Med 13:613–618. https://doi.org/10.1038/nm1582

    Article  CAS  PubMed  Google Scholar 

  95. Wahlquist C, Jeong D, Rojas-Muñoz A et al (2014) Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508:531–535. https://doi.org/10.1038/nature13073

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Bang C, Batkai S, Dangwal S et al (2014) Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 124:2136–2146. https://doi.org/10.1172/JCI70577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wong LL, Armugam A, Sepramaniam S et al (2015) Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 17:393–404. https://doi.org/10.1002/ejhf.223

    Article  CAS  PubMed  Google Scholar 

  98. Watson CJ, Gupta SK, O’Connell E et al (2015) MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 17:405–415. https://doi.org/10.1002/ejhf.244

    Article  CAS  PubMed  Google Scholar 

  99. Tijsen AJ, Creemers EE, Moerland PD et al (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039. https://doi.org/10.1161/CIRCRESAHA.110.218297

    Article  CAS  PubMed  Google Scholar 

  100. Fan K-L, Zhang H-F, Shen J et al (2013) Circulating microRNAs levels in Chinese heart failure patients caused by dilated cardiomyopathy. Indian Heart J 65:12–16. https://doi.org/10.1016/j.ihj.2012.12.022

    Article  PubMed  PubMed Central  Google Scholar 

  101. Endo K, Naito Y, Ji X et al (2013) MicroRNA 210 as a biomarker for congestive heart failure. Biol Pharm Bull 36:48–54. https://doi.org/10.1248/bpb.b12-00578

    Article  CAS  PubMed  Google Scholar 

  102. Devaux Y, Mueller M, Haaf P et al (2015) Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med 277:260–271. https://doi.org/10.1111/joim.12183

    Article  CAS  PubMed  Google Scholar 

  103. Yang H, Shan L, Gao Y et al (2021) MicroRNA-181b serves as a circulating biomarker and regulates inflammation in heart failure. Dis Markers 2021:4572282. https://doi.org/10.1155/2021/4572282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ellis KL, Cameron VA, Troughton RW et al (2013) Circulating microRNAs as candidate markers to distinguish heart failure in breathless patients. Eur J Heart Fail 15:1138–1147. https://doi.org/10.1093/eurjhf/hft078

    Article  CAS  PubMed  Google Scholar 

  105. Wang G, Zheng X, Zheng Y et al (2019) Construction and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional genes in heart failure. Mol Med Rep 19:994–1003. https://doi.org/10.3892/mmr.2018.9734

    Article  CAS  PubMed  Google Scholar 

  106. Wu T, Chen Y, Du Y et al (2018) Circulating exosomal miR-92b-5p is a promising diagnostic biomarker of heart failure with reduced ejection fraction patients hospitalized for acute heart failure. J Thorac Dis 10:6211–6220. https://doi.org/10.21037/jtd.2018.10.52

  107. Li G, Song Y, Li Y-D et al (2018) Circulating miRNA-302 family members as potential biomarkers for the diagnosis of acute heart failure. Biomark Med 12:871–880. https://doi.org/10.2217/bmm-2018-0132

    Article  CAS  PubMed  Google Scholar 

  108. Guo M, Luo J, Zhao J et al (2018) Combined use of circulating miR-133a and NT-proBNP improves heart failure diagnostic accuracy in elderly patients. Med Sci Monit 24:8840–8848. https://doi.org/10.12659/MSM.911632

  109. Hobuß L, Bär C, Thum T (2019) Long non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol 10:30. https://doi.org/10.3389/fphys.2019.00030

    Article  PubMed  PubMed Central  Google Scholar 

  110. Terracciano D, Ferro M, Terreri S et al (2017) Urinary long noncoding RNAs in nonmuscle-invasive bladder cancer: new architects in cancer prognostic biomarkers. Transl Res 184:108–117. https://doi.org/10.1016/j.trsl.2017.03.005

    Article  CAS  PubMed  Google Scholar 

  111. Li Q, Shao Y, Zhang X et al (2015) Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol 36:2007–2012. https://doi.org/10.1007/s13277-014-2807-y

    Article  CAS  PubMed  Google Scholar 

  112. Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120:381–399. https://doi.org/10.1161/CIRCRESAHA.116.308434

    Article  CAS  PubMed  Google Scholar 

  113. Jiang C, Ding N, Li J et al (2019) Landscape of the long non-coding RNA transcriptome in human heart. Brief Bioinform 20:1812–1825. https://doi.org/10.1093/bib/bby052

    Article  CAS  PubMed  Google Scholar 

  114. Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114:1569–1575. https://doi.org/10.1161/CIRCRESAHA.114.303915

    Article  CAS  PubMed  Google Scholar 

  115. de Gonzalo-Calvo D, Kenneweg F, Bang C et al (2016) Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci Rep 6:37354. https://doi.org/10.1038/srep37354

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  116. Zhang Z, Gao W, Long Q-Q et al (2017) Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci Rep 7:7491. https://doi.org/10.1038/s41598-017-07611-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  117. Liu L, An X, Li Z et al (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65. https://doi.org/10.1093/cvr/cvw078

    Article  CAS  PubMed  Google Scholar 

  118. Xuan L, Sun L, Zhang Y et al (2017) Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure. J Cell Mol Med 21:1803–1814. https://doi.org/10.1111/jcmm.13101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang F, Su X, Liu C et al (2017) Prognostic value of plasma long noncoding RNA ANRIL for in-stent restenosis. Med Sci Monit 23:4733–4739. https://doi.org/10.12659/msm.904352

  120. Lv L, Li T, Li X et al (2017) The lncRNA Plscr4 controls cardiac hypertrophy by regulating miR-214. Mol Ther Nucleic Acids 10:387–397. https://doi.org/10.1016/j.omtn.2017.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhou G, Li C, Feng J et al (2018) lncRNA UCA1 is a novel regulator in cardiomyocyte hypertrophy through targeting the miR-184/HOXA9 axis. Cardiorenal Med 8:130–139. https://doi.org/10.1159/000487204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Greco S, Zaccagnini G, Perfetti A et al (2016) Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med 14:183. https://doi.org/10.1186/s12967-016-0926-5

    Article  PubMed  PubMed Central  Google Scholar 

  123. Greco S, Zaccagnini G, Fuschi P et al (2017) Increased BACE1-AS long noncoding RNA and β-amyloid levels in heart failure. Cardiovasc Res 113:453–463. https://doi.org/10.1093/cvr/cvx013

    Article  CAS  PubMed  Google Scholar 

  124. Boeckel J-N, Perret MF, Glaser SF et al (2019) Identification and regulation of the long non-coding RNA Heat2 in heart failure. J Mol Cell Cardiol 126:13–22. https://doi.org/10.1016/j.yjmcc.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  125. Jiang F, Zhou X, Huang J (2016) Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One 11:e0152767. https://doi.org/10.1371/journal.pone.0152767

  126. Yang Y, Cai Y, Wu G et al (2015) Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. Clin Sci (Lond) 129:675–685. https://doi.org/10.1042/CS20150121

    Article  CAS  PubMed  Google Scholar 

  127. Zhang Y, Zhang L, Wang Y et al (2019) KCNQ1OT1, HIF1A-AS2 and APOA1-AS are promising novel biomarkers for diagnosis of coronary artery disease. Clin Exp Pharmacol Physiol 46:635–642. https://doi.org/10.1111/1440-1681.13094

    Article  CAS  PubMed  Google Scholar 

  128. Qu X, Du Y, Shu Y et al (2017) MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:42657. https://doi.org/10.1038/srep42657

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Giannitsi S, Bougiakli M, Bechlioulis A, Naka K (2019) Endothelial dysfunction and heart failure: a review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc Dis 8:2048004019843047. https://doi.org/10.1177/2048004019843047

    Article  PubMed  PubMed Central  Google Scholar 

  130. Premer C, Kanelidis AJ, Hare JM, Schulman IH (2019) Rethinking endothelial dysfunction as a crucial target in fighting heart failure. Mayo Clin Proc Innov Qual Outcomes 3:1–13. https://doi.org/10.1016/j.mayocpiqo.2018.12.006

    Article  PubMed  PubMed Central  Google Scholar 

  131. Sandoo A, van Zanten JJCSV, Metsios GS et al (2010) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 4:302–312. https://doi.org/10.2174/1874192401004010302

    Article  PubMed  PubMed Central  Google Scholar 

  132. Sarmah N, Nauli AM, Ally A, Nauli SM (2022) Interactions among endothelial nitric oxide synthase, cardiovascular system, and nociception during physiological and pathophysiological states. Molecules 27:2835. https://doi.org/10.3390/molecules27092835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ozkor MA, Quyyumi AA (2011) Endothelium-derived hyperpolarizing factor and vascular function. Cardiol Res Pract 2011:156146. https://doi.org/10.4061/2011/156146

  134. Ozkor MA, Hayek SS, Rahman AM et al (2015) Contribution of endothelium-derived hyperpolarizing factor to exercise-induced vasodilation in health and hypercholesterolemia. Vasc Med 20:14–22. https://doi.org/10.1177/1358863X14565374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Infante T, Costa D, Napoli C (2021) Novel insights regarding nitric oxide and cardiovascular diseases. Angiology 72:411–425. https://doi.org/10.1177/0003319720979243

    Article  CAS  PubMed  Google Scholar 

  136. Zhang J (2022) Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Rev Cardiovasc Med 23:073. https://doi.org/10.31083/j.rcm2302073

  137. Han W, Wei Z, Zhang H et al (2020) The association between sortilin and inflammation in patients with coronary heart disease. JIR 13:71–79. https://doi.org/10.2147/JIR.S240421

    Article  CAS  Google Scholar 

  138. Leite AR, Borges-Canha M, Cardoso R et al (2020) Novel biomarkers for evaluation of endothelial dysfunction. Angiology 71:397–410. https://doi.org/10.1177/0003319720903586

    Article  CAS  PubMed  Google Scholar 

  139. Kou-Gi Shyu (2017) The role of endoglin in myocardial fibrosis. Acta Cardiol Sin 33. https://doi.org/10.6515/ACS20170221B

  140. Jankowich M, Choudhary G (2020) Endothelin-1 levels and cardiovascular events. Trends Cardiovasc Med 30:1–8. https://doi.org/10.1016/j.tcm.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  141. Lugo-Gavidia LM, Burger D, Matthews VB et al (2021) Role of microparticles in cardiovascular disease: implications for endothelial dysfunction, Thrombosis, and Inflammation. Hypertension 77:1825–1844. https://doi.org/10.1161/HYPERTENSIONAHA.121.16975

    Article  CAS  PubMed  Google Scholar 

  142. Olejarz W, Łacheta D, Kubiak-Tomaszewska G (2020) Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability. IJMS 21:3946. https://doi.org/10.3390/ijms21113946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Song C, Wu G, Chang S, Bie L (2020) Plasma P-selectin level is associated with severity of coronary heart disease in Chinese Han population. J Int Med Res 48:030006051989643. https://doi.org/10.1177/0300060519896437

    Article  CAS  Google Scholar 

  144. Ye Z, Zhong L, Zhu S et al (2019) The P-selectin and PSGL-1 axis accelerates atherosclerosis via activation of dendritic cells by the TLR4 signaling pathway. Cell Death Dis 10:507. https://doi.org/10.1038/s41419-019-1736-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lino DOC, Freitas IA, Meneses GC et al (2019) Interleukin-6 and adhesion molecules VCAM-1 and ICAM-1 as biomarkers of post-acute myocardial infarction heart failure. Braz J Med Biol Res 52:e8658. https://doi.org/10.1590/1414-431x20198658

  146. Wang T, Tian J, Jin Y (2021) VCAM1 expression in the myocardium is associated with the risk of heart failure and immune cell infiltration in myocardium. Sci Rep 11:19488. https://doi.org/10.1038/s41598-021-98998-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  147. Polyakova EA, Mikhaylov EN, Sonin DL et al (2021) Neurohumoral, cardiac and inflammatory markers in the evaluation of heart failure severity and progression. J Geriatr Cardiol 18:47–66. https://doi.org/10.11909/j.issn.1671-5411.2021.01.007

  148. Delong C, Sharma S (2022) Physiology, peripheral vascular resistance. In: StatPearls. StatPearls Publishing, Treasure Island (FL)

  149. Gutiérrez E, Flammer AJ, Lerman LO et al (2013) Endothelial dysfunction over the course of coronary artery disease. Eur Heart J 34:3175–3181. https://doi.org/10.1093/eurheartj/eht351

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tran N, Garcia T, Aniqa M et al (2022) Endothelial nitric oxide synthase (eNOS) and the cardiovascular system: in physiology and in disease states. Am J Biomed Sci Res 15:153–177

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Münzel T, Camici GG, Maack C et al (2017) Impact of oxidative stress on the heart and vasculature part 2 of a 3-Part Series. J Am Coll Cardiol 70:212–229. https://doi.org/10.1016/j.jacc.2017.05.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rotariu D, Babes EE, Tit DM et al (2022) Oxidative stress - complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomed Pharmacother 152:113238. https://doi.org/10.1016/j.biopha.2022.113238

  153. Tsutsui H, Kinugawa S, Matsushima S (2011) Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol 301:H2181-2190. https://doi.org/10.1152/ajpheart.00554.2011

    Article  CAS  PubMed  Google Scholar 

  154. Pacher P, Szabó C (2006) Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 6:136–141. https://doi.org/10.1016/j.coph.2006.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gheorghiade M, De Luca L, Fonarow GC et al (2005) Pathophysiologic targets in the early phase of acute heart failure syndromes. Am J Cardiol 96:11G-17G. https://doi.org/10.1016/j.amjcard.2005.07.016

    Article  PubMed  Google Scholar 

  156. Colombo PC, Onat D, Sabbah HN (2008) Acute heart failure as “acute endothelitis”–Interaction of fluid overload and endothelial dysfunction. Eur J Heart Fail 10:170–175. https://doi.org/10.1016/j.ejheart.2007.12.007

    Article  PubMed  Google Scholar 

  157. Theofilis P, Sagris M, Oikonomou E et al (2021) Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines 9:781. https://doi.org/10.3390/biomedicines9070781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Widmer RJ, Lerman A (2014) Endothelial dysfunction and cardiovascular disease. Glob Cardiol Sci Pract 2014:291–308. https://doi.org/10.5339/gcsp.2014.43

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sun H-J, Wu Z-Y, Nie X-W, Bian J-S (2019) Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front Pharmacol 10:1568. https://doi.org/10.3389/fphar.2019.01568

    Article  CAS  PubMed  Google Scholar 

  160. Hollenberg SM, Klein LW, Parrillo JE et al (2004) Changes in coronary endothelial function predict progression of allograft vasculopathy after heart transplantation. J Heart Lung Transplant 23:265–271. https://doi.org/10.1016/S1053-2498(03)00150-5

    Article  PubMed  Google Scholar 

  161. Konior A, Schramm A, Czesnikiewicz-Guzik M, Guzik TJ (2014) NADPH oxidases in vascular pathology. Antioxid Redox Signal 20:2794–2814. https://doi.org/10.1089/ars.2013.5607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Sriramula S, Francis J (2015) Tumor necrosis factor - alpha is essential for angiotensin II-induced ventricular remodeling: role for oxidative stress. PLoS One 10:e0138372. https://doi.org/10.1371/journal.pone.0138372

  163. van de Wal RMA, Plokker HWM, Lok DJA et al (2006) Determinants of increased angiotensin II levels in severe chronic heart failure patients despite ACE inhibition. Int J Cardiol 106:367–372. https://doi.org/10.1016/j.ijcard.2005.02.016

    Article  PubMed  Google Scholar 

  164. Dunlay SM, Weston SA, Redfield MM et al (2008) Tumor necrosis factor-alpha and mortality in heart failure: a community study. Circulation 118:625–631. https://doi.org/10.1161/CIRCULATIONAHA.107.759191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Browne MA, Crump P, Niven SJ et al (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179. https://doi.org/10.1021/es201811s

    Article  CAS  PubMed  ADS  Google Scholar 

  166. Persiani E, Cecchettini A, Ceccherini E et al (2023) Microplastics: a matter of the heart (and vascular system). Biomedicines 11:264. https://doi.org/10.3390/biomedicines11020264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu Z, Zhuan Q, Zhang L et al (2022) Polystyrene microplastics induced female reproductive toxicity in mice. J Hazard Mater 424:127629. https://doi.org/10.1016/j.jhazmat.2021.127629

  168. Fournier SB, D’Errico JN, Adler DS et al (2020) Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol 17:55. https://doi.org/10.1186/s12989-020-00385-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Stapleton PA, Minarchick VC, Cumpston AM et al (2012) Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci 13:13781–13803. https://doi.org/10.3390/ijms131113781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Li Z, Zhu S, Liu Q et al (2020) Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats. Environ Pollut 265:115025. https://doi.org/10.1016/j.envpol.2020.115025

  171. Jones AE, Watts JA , Debelak JP et al (2003) Inhibition of prostaglandin synthesis during polystyrene microsphere-induced pulmonary embolism in the rat. Am J Physiol Lung Cell Moler Physiol 284. https://doi.org/10.1152/ajplung.00283.2002

  172. Roshanzadeh A, Oyunbaatar N-E, Ganjbakhsh SE et al (2021) Exposure to nanoplastics impairs collective contractility of neonatal cardiomyocytes under electrical synchronization. Biomaterials 278:121175. https://doi.org/10.1016/j.biomaterials.2021.121175

Download references

Acknowledgements

The authors thank Sri Balaji Vidyapeeth (deemed to be University) for providing infrastructure facilities for writing this review article. The authors also acknowledge Dr. Pooja Pratheesh for proofreading this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agieshkumar Balakrishna Pillai.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariappan, V., Srinivasan, R., Pratheesh, R. et al. Predictive biomarkers for the early detection and management of heart failure. Heart Fail Rev 29, 331–353 (2024). https://doi.org/10.1007/s10741-023-10347-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-023-10347-w

Keywords

Navigation