Skip to main content

Advertisement

Log in

Involvement of METTL3/m6Adenosine and TGFβ/Smad3 signaling on Tenon’s fibroblasts and in a rabbit model of glaucoma surgery

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Glaucoma filtration surgery (GFS) is a classic operation for the treatment of glaucoma, which is the second leading cause of blindness, and scar formation caused by excessive human Tenon’s capsule fibroblasts (HTFs) activation is responsible for surgery failure. However, the mechanism underlying excessive HTFs activation is largely unknown. Studies have revealed that N6-methyladenosine (m6A), which is one of the most common posttranscriptional modifications, plays an important role in multiple types of cellular processes. First, we isolated and identified primary HTFs and found that transforming growth factor-β1 (TGF-β1) enhanced cell viability and promoted cell proliferation and extracellular matrix (ECM) deposition in HTFs. We subsequently found that TGF-β1 elevated the quantity of m6A and promoted the expression of m6A “writers”, in the process from DNA to RNA, adenylate was methylated at the sixth N position by methylases methyltransferase-like 3 (METTL3). Furthermore, we demonstrated that METTL3 repression inhibited the promotion of cell viability, proliferation and ECM deposition in HTFs treated with TGF-β1. We then illustrated that increased METTL3 played a role by promoting Smad3 in TGF-β1-induced HTFs. We subsequently demonstrated that the METTL3/Smad3 regulatory axis was aberrantly expressed in the rabbit model of GFS. Thus, our study reveals that METTL3 indeed plays a role in modulating Smad3 in TGF-β1-induced HTFs and further provides novel theoretical strategies based on METTL3 for the inhibition of scar formation after GFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams JM, Cory S (1975) Modified nucleosides and bizarre 5’-termini in mouse myeloma mRNA. Nature 255:28–33

    Article  CAS  PubMed  Google Scholar 

  • Anumanthan G, Wilson PJ, Tripathi R, Hesemann NP, Mohan RR (2018) Blockade of KCa3.1: A novel target to treat TGF-β1 induced conjunctival fibrosis. Exp Eye Res 167:140–144

    Article  CAS  PubMed  Google Scholar 

  • Balendra SI, Shah PA, Jain M, Grzybowski A, Cordeiro MF (2017) Glaucoma: hot topics in pharmacology. Curr Pharm Des 23:596–607

    Article  PubMed  Google Scholar 

  • Bertero A, Brown S, Madrigal P, Osnato A, Ortmann D, Yiangou L, Kadiwala J, Hubner NC, de Los Mozos IR, Sadee C, Lenaerts AS, Nakanoh S, Grandy R, Farnell E, Ule J, Stunnenberg HG, Mendjan S, Vallier L (2018) The SMAD2/3 interactome reveals that TGFbeta controls m(6)A mRNA methylation in pluripotency. Nature 555:256–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister AJ, Han N, De Braekeleer E, Ponstingl H, Hendrick A, Vakoc CR, Vassiliou GS, Kouzarides T (2017) Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature 552:126–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao G, Li HB, Yin Z, Flavell RA (2016) Recent advances in dynamic m6A RNA modification. Open Biol 6:160003

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandola U, Das R, Panda B (2015) Role of the N6-methyladenosine RNA mark in gene regulation and its implications on development and disease. Brief Funct Genomics 14:169–179

    Article  CAS  PubMed  Google Scholar 

  • Chang MR, Cheng Q, Lee DA (1998) Basic science and clinical aspects of wound healing in glaucoma filtering surgery. Journal of Ocular Pharmacology and Therapeutics : the Official Journal of the Association for Ocular Pharmacology and Therapeutics 14:75–95

    Article  CAS  Google Scholar 

  • Chen N, Guo D, Guo Y, Sun Y, Bi H, Ma X (2016) Paclitaxel inhibits cell proliferation and collagen lattice contraction via TGF-beta signaling pathway in human tenon’s fibroblasts in vitro. Eur J Pharmacol 777:33–40

    Article  CAS  PubMed  Google Scholar 

  • Crawley L, Zamir SM, Cordeiro MF, Guo L (2012) Clinical options for the reduction of elevated intraocular pressure. Ophthalmology and Eye Diseases 4:43–64

    Article  PubMed  PubMed Central  Google Scholar 

  • Deng M, Hou SY, Tong BD, Yin JY, Xiong WJJOCP (2019) The Smad2/3/4 complex binds miR-139 promoter to modulate TGFβ-induced proliferation and activation of human Tenon’s capsule fibroblasts through the Wnt pathway. J Cell Physiol 234:13342–13352

    Article  CAS  PubMed  Google Scholar 

  • Denk PO, Roth-Eichhorn S, Gressner AM, Knorr M (2000) Cytokine regulation of hyaluronate production by human Tenon’s capsule fibroblasts. Curr Eye Res 20:77–80

    Article  CAS  PubMed  Google Scholar 

  • Desrosiers R, Friderici K, Rottman F (1974) Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA 71:3971–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  • He C (2010) Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6:863–865

    Article  CAS  PubMed  Google Scholar 

  • Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M (2002) Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol (Chicago, Ill: 1960) 120:1268–1279

    Article  Google Scholar 

  • Higgins SP, Tang Y, Higgins CE, Mian B, Zhang W, Czekay RP, Samarakoon R, Conti DJ, Higgins PJ (2018) TGF-beta1/p53 signaling in renal fibrogenesis. Cell Signal 43:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kiuchi Y, Yanagi M, Itakura K, Takahashi I, Hida A, Ohishi W, Furukawa K (2019) Association between radiation, glaucoma subtype, and retinal vessel diameter in atomic bomb survivors. Sci Rep 9:8642–8642

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobat SG, Celiker FU, Dagli AF, Kasar K (2018) The effect on wound healing of pazopanib and bevacizumab compared with corticosteroid in experimental glaucoma filtration surgery. Int J Ophthalmol 11:1909–1915

    PubMed  PubMed Central  Google Scholar 

  • Leite MT, Sakata LM, Medeiros FA (2011) Managing glaucoma in developing countries. Arq Bras Oftalmol 74:83–84

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Li X, Tang H, Jiang B, Dou Y, Gorospe M, Wang W (2017) NSUN2-mediated m5C methylation and METTL3/METTL14-mediated m6A methylation cooperatively enhance p21 translation. J Cell Biochem 118:2587–2598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Wen J, Liu R, Gao W, Qu B, Yu M (2018) Nintedanib inhibits TGF-beta-induced myofibroblast transdifferentiation in human Tenon’s fibroblasts. Mol vis 24:789–800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Yang S, Sui J, Xu SY, Cheng YP, Shen B, Zhang Y, Zhang XM, Yin LH, Pu YP, Liang GY (2020) Dysregulated N6-methyladenosine methylation writer METTL3 contributes to the proliferation and migration of gastric cancer. J Cell Physiol 235:548–562

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu PP, Liu L, Zheng XS, Zheng H, Yang CC, Luobu CR, Liu Y (2018) Triptolide inhibits TGF-beta-induced matrix contraction and fibronectin production mediated by human Tenon fibroblasts. Int J Ophthalmol 11:1108–1113

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu Z, Tang H, Shen Y, Gong Z, Xie N, Zhang X, Wang W, Kong W, Zhou Y, Fu Y (2019) The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 facilitates M1 macrophage polarization through the methylation of STAT1 mRNA. Am J Physiol Cell Physiol 317:C762-c775

    Article  CAS  PubMed  Google Scholar 

  • Matlach J, Hipp M, Wagner M, Heuschmann PU, Klink T, Grehn F (2015) A comparative study of a modified filtering trabeculotomy and conventional trabeculectomy. Clin Ophthalmol (Auckland, N.Z.) 9:483–492

    Article  Google Scholar 

  • Meyer KD, Jaffrey SR (2017) Rethinking m(6)A Readers, Writers, and Erasers. Annu Rev Cell Dev Biol 33:319–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migdal C, Hitchings R (1986) Control of chronic simple glaucoma with primary medical, surgical and laser treatment. Trans Ophthalmol Soc U K 105(Pt 6):653–656

    PubMed  Google Scholar 

  • Panneerdoss S, Eedunuri VK, Yadav P, Timilsina S, Rajamanickam S, Viswanadhapalli S, Abdelfattah N, Onyeagucha BC, Cui X, Lai Z, Mohammad TA, Gupta YK, Huang TH, Huang Y, Chen Y, Rao MK (2018) Cross-talk among writers, readers, and erasers of m(6)A regulates cancer growth and progression. Sci Adv 4:8263

    Article  Google Scholar 

  • Park HY, Kim JH, Park CK (2013) VEGF induces TGF-beta1 expression and myofibroblast transformation after glaucoma surgery. Am J Pathol 182:2147–2154

    Article  CAS  PubMed  Google Scholar 

  • Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90:262–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Wu R, Ming L (2019) The role of m6A RNA methylation in cancer. Biomed Pharmacother 112:108613–108613

    Article  CAS  PubMed  Google Scholar 

  • Wanna-Udom S, Terashima M, Lyu H, Ishimura A, Takino T, Sakari M, Tsukahara T, Suzuki T (2020) The m6A methyltransferase METTL3 contributes to transforming growth factor-beta-induced epithelial-mesenchymal transition of lung cancer cells through the regulation of JUNB. Biochem Biophys Res Commun 524:150–155

    Article  CAS  PubMed  Google Scholar 

  • Wei CM, Gershowitz A, Moss B (1975) Methylated nucleotides block 5’ terminus of HeLa cell messenger RNA. Cell 4:379–386

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Ji X, Guo X, Ji S (2017) Regulatory role of N(6) -methyladenosine (m(6) A) methylation in RNA processing and human diseases. J Cell Biochem 118:2534–2543

    Article  CAS  PubMed  Google Scholar 

  • Weinreb RN, Aung T, Medeiros FA (2014) The pathophysiology and treatment of glaucoma: a review. JAMA 311:1901–1911

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen J, Lin X, Gao W, Qu B, Ling Y, Liu R, Yu M (2019) MEK inhibition prevents TGFbeta1induced myofibroblast transdifferentiation in human tenon fibroblasts. Mol Med Rep 19:468–476

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Sawada A, Mayama C, Araie M, Ohkubo S, Sugiyama K, Kuwayama Y (2014) The 5-year incidence of bleb-related infection and its risk factors after filtering surgeries with adjunctive mitomycin C: collaborative bleb-related infection incidence and treatment study 2. Ophthalmology 121:1001–1006

    Article  PubMed  Google Scholar 

  • Yang Y, Hsu PJ, Chen YS, Yang YG (2018) Dynamic transcriptomic m(6)A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res 28:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonemura H, Futakuchi A, Inoue-Mochita M, Fujimoto T, Takahashi E, Tanihara H, Inoue T (2019) DNA methyltransferase inhibitor suppresses fibrogenetic changes in human conjunctival fibroblasts. Mol vis 25:382–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon K-J, Ringeling FR, Vissers C, Jacob F, Pokrass M, Jimenez-Cyrus D, Su Y, Kim N-S, Zhu Y, Zheng L, Kim S, Wang X, Doré LC, Jin P, Regot S, Zhuang X, Canzar S, He C, Ming G-L, Song H (2017) Temporal Control of Mammalian Cortical Neurogenesis by m(6)A Methylation. Cell 171:877-889.e817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue Y, Liu J, He C (2015) RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev 29:1343–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Zhu H, Liu Y, Quan F, Zhang X, Yu L (2018) LncRNA HOTAIR mediates TGF-beta2-induced cell growth and epithelial-mesenchymal transition in human lens epithelial cells. Acta Biochim Biophys Sin 50:1028–1037

    Article  CAS  PubMed  Google Scholar 

  • Zhao MJ, Chen SY, Qu XY, Abdul-Fattah B, Lai T, Xie M, Wu SD, Zhou YW, Huang CZ (2018) Increased Cthrc1 activates normal fibroblasts and suppresses keloid fibroblasts by inhibiting TGF-beta/Smad signal pathway and modulating YAP subcellular location. Curr Med Sci 38:894–902

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81570841).

Author information

Authors and Affiliations

Authors

Contributions

LY designed the experiments; LY, YL, CG, XBL and TWW conducted the experiments; LY and YL analyzed the data and wrote the paper. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Ling Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Gu, C., Li, X. et al. Involvement of METTL3/m6Adenosine and TGFβ/Smad3 signaling on Tenon’s fibroblasts and in a rabbit model of glaucoma surgery. J Mol Histol 52, 1129–1144 (2021). https://doi.org/10.1007/s10735-021-10028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-021-10028-8

Keywords

Navigation