Skip to main content
Log in

Combining single-molecule sequencing and Illumina RNA sequencing to elucidate flowering induction of pineapple (Ananas comosus (L.) Merr.) treated with exogenous ethylene

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Exogenous ethylene (ethephon) is widely used to induce pineapple (Ananas comosus (L.) Merr.) flowering. However, economic losses often occur due to inappropriate flower induction, which results in a lower flowering rate or no flowering, and the molecular mechanisms of flowering induction in pineapple remain unclear. To understand the global changes in gene expression during ethylene-induced pineapple flowering, we performed single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing of shoot apexes or inflorescences at six time points (0 d, 8 h, 1 d, 4 d, 7 d, and 14 d after ethephon treatment). In addition, to understand the cellular and physiological processes during flowering, we also observed histological changes and measured the changes in several endogenous plant growth regulators. In this study, we obtained 29,745 polished high-quality isoforms, of which 523 had not yet been annotated within the A. comosus genome. Furthermore, 2049 alternative splicing (AS) events, 78 fusion genes, 139 long-chain non-coding RNAs (lncRNAs), and 11,184 alternative polyadenylation (APA) events were identified by SMRT sequencing. Illumina sequencing of libraries generated from these samples yielded 106.09 Gb clean reads, and the total mapped reads were 86.53%. Comparative analysis of these transcriptome databases revealed 3,690 differentially expressed genes (DEGs) between 0 d and the other time points. Candidate genes that may be involved in pineapple flowering are predicted to encode hormone-related proteins, flowering time proteins, and transcription factors. This study contributes to transcriptome information for A. comosus and will facilitate further exploration of the molecular mechanisms of ethylene-induced pineapple flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Ghany SE, Hamilton M, Jacobi JL et al (2016) A survey of the sorghum transcriptome using single-molecule long reads. Nat Commun 7(1):1–11

    Article  Google Scholar 

  • Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18(7):437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botella MÁ, Del Amor F, Amorós A et al (2000) Polyamine, ethylene and other physico-chemical parameters in tomato (Lycopersicon esculentum) fruits as affected by salinity. Physiol Plant 109(4):428–434

    Article  CAS  Google Scholar 

  • Campos KO, Kerbauy GB (2004) Thermoperiodic effect on flowering and endogenous hormonal status in Dendrobium (Orchidaceae). J Plant Physiol 161(12):1385–1387

    Article  CAS  PubMed  Google Scholar 

  • Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, De-la-Peña C (2017) Plant hormone signaling in flowering: an epigenetic point of view. J Plant Physiol 214:16–27

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Hu Y, Vannozzi A et al (2017) The WRKY transcription factor family in model plants and crops. Crit Rev Plant Sci 36(5–6):311–335

    Article  Google Scholar 

  • Chen X, Li C, Wang H, Guo Z (2019) WRKY transcription factors: evolution, binding, and action. Phytopathol Res 1(1):1–15

    Article  CAS  Google Scholar 

  • Chen Y, Hao X, Cao J (2014) Small auxin upregulated RNA (SAUR) gene family in maize: identification, evolution, and its phylogenetic comparison with Arabidopsis, rice, and sorghum. J Integr Plant Biol 56(2):133–150

    Article  CAS  PubMed  Google Scholar 

  • Cho LH, Yoon J, An G (2017) The control of flowering time by environmental factors. Plant J 90(4):708–719

    Article  CAS  PubMed  Google Scholar 

  • Elkon R, Ugalde AP, Agami R (2013) Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 14:496–506

    Article  CAS  PubMed  Google Scholar 

  • Espinosa MEÁ, Moreira RO, Lima AA et al (2017) Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction. J Plant Physiol 209:11–19

    Article  CAS  PubMed  Google Scholar 

  • Friend DJ, Lydon J (1979) Effects of daylength on flowering, growth, and CAM of pineapple (Ananas comosus [L] Merrill). Bot Gaz 140(3):280–283

    Article  Google Scholar 

  • Giani AM, Gallo GR, Gianfranceschi L, Formenti G (2020) Long walk to genomics: history and current approaches to genome sequencing and assembly. Comput Struct Biotechnol J 18:9–19

    Article  CAS  PubMed  Google Scholar 

  • Goslin K, Zheng B, Serrano-Mislata A et al (2017) Transcription factor interplay between LEAFY and APETALA1/CAULIFLOWER during floral initiation. Plant Physiol 174(2):1097–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Götz S, García-Gómez JM, Terol J et al (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowing DP (1961) Experiments on the photoperiodic response in pineapple. Amer J Bot 48(1):16–21

    Article  Google Scholar 

  • Guan YR, Xue JQ, Xue YQ et al (2019) Effect of exogenous GA3 on flowering quality, endogenous hormones, and hormone-and flowering-associated gene expression in forcing-cultured tree peony (Paeonia suffruticosa). J Integr Plant Biol 18(6):1295–1311

    CAS  Google Scholar 

  • Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49(3–4):373–385

    Article  CAS  Google Scholar 

  • Heisler MG, Ohno C, Das P et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15(21):1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Khan NA, Ferrante A et al (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8:475

    Article  PubMed  PubMed Central  Google Scholar 

  • Izawa T (2021) What is going on with the hormonal control of flowering in plants? Plant J 105(2):431–445

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita A, Richter R (2020) Genetic and molecular basis of floral induction in Arabidopsis thaliana. J Exp Bot 71(9):2490–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Pan BZ, Niu L et al (2018) Gibberellin inhibits floral initiation in the perennial woody plant Jatropha curcas. J Plant Growth Regul 37(3):999–1006

    Article  CAS  Google Scholar 

  • Li YH, Wu QS, Huang X et al (2016) Molecular cloning and characterization of four genes encoding ethylene receptors associated with pineapple (Ananas comosus L.) flowering. Front Plant Sci 7:710

    PubMed  PubMed Central  Google Scholar 

  • Li YH, Zhang HN, Wu QS, Muday GK (2017) Transcriptional sequencing and analysis of major genes involved in the adventitious root formation of mango cotyledon segments. Planta 245(6):1193–1213

    Article  CAS  PubMed  Google Scholar 

  • Liu CH, Fan C (2016) De novo transcriptome assembly of floral buds of pineapple and identification of differentially expressed genes in response to ethephon induction. Front Plant Sci 7:203

    PubMed  PubMed Central  Google Scholar 

  • Liu CH, Liu Y, Shao XH, Lai D (2018) Comparative analyses of the transcriptome and proteome of Comte de Paris and Smooth Cayenne to improve the understanding of ethephon-induced floral transition in pineapple. Cell Physiol Biochem 50(6):2139–2156

    Article  CAS  PubMed  Google Scholar 

  • Ma B, Chen H, Chen SY, Zhang JS (2014) Roles of ethylene in plant growth and responses to stresses. In: Tran L-SP, Pal S (eds) Phytohormones: a window to metabolism, signaling and biotechnological applications. Springer Science+Business Media, New York, pp 81–118

    Chapter  Google Scholar 

  • Maruthasalam S, Shiu LY, Loganathan M et al (2010) Forced flowering of pineapple (Ananas comosus cv Tainon 17) in response to cold stress, ethephon and calcium carbide with or without activated charcoal. Plant Growth Regul 60(2):83–90

    Article  CAS  Google Scholar 

  • Min XJ, Bartholomew DP (1996) Effect of plant growth regulators on ethylene production, 1-aminocyclopropane-1-carboxylic acid oxidase activity, and initiation of inflorescence development of pineapple. J Plant Growth Regul 15(3):121–128

    Article  CAS  Google Scholar 

  • Ming R, VanBuren R, Wai CM et al (2015) The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47(12):1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers ZA, Holt BF III (2018) NUCLEAR FACTOR-Y: still complex after all these years? Curr Opin Plant Biol 45:96–102

    Article  CAS  PubMed  Google Scholar 

  • Rademacher W (2018) Chemical regulators of gibberellin status and their application in plant production. Annu Plant Rev 49:359–403

    Google Scholar 

  • Redwan RM, Saidin A, Kumar SV (2016) The draft genome of MD-2 pineapple using hybrid error correction of long reads. DNA Res 23(5):427–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers MF, Thomas J, Reddy AS, Ben-Hur A (2012) SpliceGrapher: detecting patterns of alternative splicing from RNA-Seq data in the context of gene models and EST data. Genome Biol 13(1):R4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanewski GM, Bartholomew DP, Paull RE (Eds) (2018) The pineapple: botany, production and uses CABI

  • Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Wang L, Zhou B et al (2020) Comparative transcriptional analysis reveled genes related to short winter-dormancy regulation in Camellia sinensis. Plant Growth Regul 92(2):401–415

    Article  CAS  Google Scholar 

  • Trusov Y, Botella JR (2006) Silencing of the ACC synthase gene AcACS2 causes delayed flowering in pineapple [Ananas comosus (L) Merr]. J Exp Bot 57(14):3953–3960

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136(6):1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Wagner J, Coupland P, Browne P, Lawley D, Francis C, Parkhill J (2016) Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbial 16(1):274

    Article  Google Scholar 

  • Wang B, Tseng E, Regulski M et al (2016) Unveiling the complexity of the maize transcriptome by single-molecule long-read sequencing. Nat Commun 7(1):1–13

    Google Scholar 

  • Wang J, Li Z, Lei M et al (2017) Integrated DNA methylome and transcriptome analysis reveals the ethylene-induced flowering pathway genes in pineapple. Sci Rep 7:17167

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang RH, Hsu YM, Bartholomew DP et al (2007) Delaying natural flowering in pineapple through foliar application of aviglycine, an inhibitor of ethylene biosynthesis. HortScience 42(5):1188–1191

    Article  CAS  Google Scholar 

  • Wang T, Yang F, Guo Q et al (2020) Long-read sequencing of Chrysanthemum morifolium transcriptome reveals flavonoid biosynthesis and regulation. Plant Growth Regul 92(3):559–569

    Article  CAS  Google Scholar 

  • Wang Y, Li L, Ye T, Lu Y, Chen X, Wu Y (2013) The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. J Exp Bot 64(2):675–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen CK (2015) Ethylene in plants. Springer Science+Business Media, Dordrecht

    Book  Google Scholar 

  • Wenger AM, Peluso P, Rowell WJ et al (2019) Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nat Biotechnol 37(10):1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21(9):1859–1875

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Liang F, Gill RA et al (2020) A global survey of the transcriptome of allopolyploid Brassica napus based on single-molecule long-read isoform sequencing and Illumina-based RNA sequencing data. Plant J 103(2):843–857

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Cheng S, Zhou X et al (2019) A global survey of full-length transcriptome of Ginkgo biloba reveals transcript variants involved in flavonoid biosynthesis. Ind Crop Prod 139:111547

    Article  CAS  Google Scholar 

  • Zhang HN, Liu SH, Sun WS et al (2018) Ethylene induced sensitivity of difference pineapple varieties. Chin J Trop Crops 39(6):1087–1094

    Google Scholar 

  • Zhang J, Yan C, Liu Y et al (2013) Effects of different forcing date on growth of pineapple fruit. Hans J Food Nutr Sci 2:25–28

    Article  Google Scholar 

  • Zhang ZL, Fan HY, Hua M, He F (2012) Induction of pineapple flowering and underlying physiological and molecular bases. Chin J Trop Crops 33(5):950–955

    CAS  Google Scholar 

  • Zhu ZY, Yang YM, Sun GM, Liu SH (2012) Natural flowering of pineapple and the inhibited technology. China Trop Agr 48:75–77

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Hainan Provincial Natural Science Foundation of China (318MS098), the National Key Research and Development Program of China (2018YFD1000504), the Innovation Team Project Funds for Chinese Academy of Tropical Agricultural Sciences (1630062017027, 17CXTD-10) and the President’s Fund of Minnan Normal University (KJ2020004).

Author information

Authors and Affiliations

Authors

Contributions

YL and QW conceived and designed the experiments. YL performed histological observation and wrote the manuscript. ML performed plant treating, qRT-PCR, PCR validation of AS and fusion gene. ML, SL, HZ, WL, XZ and QW participated in the preparation of the plant materials. YL and ML performed the data analysis. All authors of this study have read and approved the manuscript.

Corresponding author

Correspondence to Yun-He Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Xingfeng Shao.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Wu, QS., Liu, SH. et al. Combining single-molecule sequencing and Illumina RNA sequencing to elucidate flowering induction of pineapple (Ananas comosus (L.) Merr.) treated with exogenous ethylene. Plant Growth Regul 94, 303–321 (2021). https://doi.org/10.1007/s10725-021-00720-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-021-00720-w

Keywords

Navigation