Skip to main content
Log in

Genome-wide association study reveals novel genes on different chromosomal positions regulating boll weight in upland cotton (Gossypium hirsutum L.)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The boll weight (BW) is the most decisive yield component character and is utilized as a key index for selection in various cotton improvement programs. In the current study, 1260 accessions of cotton with a diverse genetic background were assessed for boll weight across four different environments (two locations for each environment) in China. A genome-wide association study (GWAS) was performed to mine novel single nucleotide polymorphisms (SNPs) controlling boll weight characteristics. A total of 1,122,352 SNPs were identified in association with boll weight across multiple environments, of which 138 were designated as key SNPs, harboring significantly higher association peaks for the all chromosomes on the basis of log10 P value (− log10 ≥ 6). Among 53 significant associations related to BW development across environments were identified. Six genes in the vicinity of these key SNPs (Pentatricopeptide repeat-containing protein PCMP-E76), Trihelix transcription factor ASIL2, Auxin-responsive protein SAUR50, Floral homeotic protein AGAMOUS (AG), Piriformospora indica-insensitive protein 2 (PII-2), and LOB domain-containing protein 16 (LBD16) exhibited higher expression patterns. These identified BW-related key SNPs and candidate genes could prove to have potential for influencing BW development in upland cotton. The outcome of the current study will serve as a base for further mechanistic research focused on the exploitation of BW for accelerated cotton improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AY:

Henan-Anyang

BLUP:

Best linear unbiased prediction

BW:

Boll weight

Chr:

Chromosome

CS:

Hunan-Changsha

EMMAX:

Efficient mixed-model association expedited

Gh:

Gossipium Hirsutum L.

GWAS:

Genome wide association study

JS:

JiangSu

LD:

Linkage disequilibrium

Pop:

Population

SJZ:

Hebei-Shijiazhuang

SNPs:

Single nucleotide polymorphisms

TPM:

Transcripts per million

XJ1:

XinJiang-Urumchi

XJ2:

XinJiang-Alaer

XJ3:

Xinjiang-Shihezi

XJ4:

XinJiang-Shihezi

References

  • Barkan A, Small I (2014) Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65:415–442

    Article  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  • Bradbury B (2001) 2002 Oregon Blue Book 2001–2002

  • Campbell B, Williams V, Park W (2009) Using molecular markers and field performance data to characterize the Pee Dee cotton germplasm resources. Euphytica 169(3):285–301

    Article  CAS  Google Scholar 

  • Chaudhry UF, Khalid MN, Aziz S, Amjad I, Khalid A, Noor H, Sajid HB (2022) Genetic studies in different F2 segregating population for yield and fiber quality traits in cotton (Gossypium hirsutum L.). Int J Agri Biosci 11(1):11

    Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Dai P, Sun G, Jia Y, Pan Z, Tian Y, Peng Z, Li H, He S, Du X (2020) Extensive haplotypes are associated with population differentiation and environmental adaptability in upland cotton (Gossypium hirsutum). Theor Appl Genet 133(12):3273–3285

    Article  CAS  PubMed  Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B (2017) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49(7):1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Li L, Tang M, Liu Q, Ji Z, Sun D, Liu G, Zhao S, Huang C, Zhang Y, Zhang G, Yu S (2022) Detection of stable elite haplotypes and potential candidate genes of boll weight across multiple environments via GWAS in upland cotton. Front Plant Sci 13:929168

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu A, Wang Q, Mu J, Ma L, Wen C, Zhao X, Gao L, Li J, Shi K, Wang Y (2021) Combined genomic, transcriptomic, and metabolomic analyses provide insights into chayote (Sechium edule) evolution and fruit development. Hortic Res. https://doi.org/10.1038/s41438-021-00487-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassan A, Naseer A, Shahani AAA, Aziz S, Khalid MN, Mushtaq N, Munir MA (2022) Assessment of fiber and yield related traits in mutant population of cotton. Int J Agri Biosci 11(2):8

    Google Scholar 

  • He S, Sun G, Geng X, Gong W, Dai P, Jia Y, Shi W, Pan Z, Wang J, Wang L (2021) The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet 53(6):916–924

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Huang J-Q, Chen X-Y, Zhu Y-X (2021) Recent advances and future perspectives in cotton research. Annu Rev Plant Biol 72:437–462

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol 127(4):1361–1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laghari AH, Mari MJ, Chang MS, Hakro SA, Vistro R (2022) Comparative analysis and function of multiprotein bridging factor1 (MBF1) genes in cotton. Int J Agri Biosci 11(2):17

    Google Scholar 

  • Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50(6):803–813

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Wang Z, Li W, Zhang Y, Zhou X, Liu Y, Ren Z, Pei X, Zhou K, Zhang W (2019) Resequencing core accessions of a pedigree identifies derivation of genomic segments and key agronomic trait loci during cotton improvement. Plant Biotechnol J 17(4):762–775

    Article  CAS  PubMed  Google Scholar 

  • Manan A, Zafar MM, Ren M, Khurshid M, Sahar A, Rehman A, Firdous H, Youlu Y, Razzaq A, Shakeel A (2022) Genetic analysis of biochemical, fiber yield and quality traits of upland cotton under high-temperature. Plant Prod Sci 25(1):105–119

    Article  CAS  Google Scholar 

  • Matsumura Y, Iwakawa H, Machida Y, Machida C (2009) Characterization of genes in the ASYMMETRIC LEAVES2/LATERAL ORGAN BOUNDARIES (AS2/LOB) family in Arabidopsis thaliana, and functional and molecular comparisons between AS2 and other family members. Plant J 58(3):525–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarty JC, Wu J, Jenkins JN (2008) Genetic association of cotton yield with its component traits in derived primitive accessions crossed by elite upland cultivars using the conditional ADAA genetic model. Euphytica 161(3):337–352

    Article  CAS  Google Scholar 

  • Mcgraw-Hill C (2008) Statistix 8.1 (Analytical Software, Tallahassee, Florida) Maurice/Thomas text, Florida, USA

  • Nie JJ, Yuan YC, Qin DI, Liu YH, Wang SI, Li JP, Zhang MI, Na Z, Guo WJ, Jie Q (2019) Spatial distribution of bolls affects yield formation in different genotypes of Bt cotton varieties. J Integr Agric 18(11):2492–2504

    Article  CAS  Google Scholar 

  • Pelayo MA, Yamaguchi N, Ito T (2021) One factor, many systems: the floral homeotic protein AGAMOUS and its epigenetic regulatory mechanisms. Curr Opin Plant Biol 61:102009

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Guo W, Zhang Y-M, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117(6):883–894

    Article  PubMed  Google Scholar 

  • Razzaq A, Zafar MM, Ali A, Hafeez A, Sharif F, Guan X, Deng X, Pengtao L, Shi Y, Haroon M (2021) The pivotal role of major chromosomes of sub-genomes A and D in fiber quality traits of cotton 12: 642595

  • Ron M, Weller J (2007) From QTL to QTN identification in livestock–winning by points rather than knock-out: a review. Anim Genet 38(5):429–439

    Article  CAS  PubMed  Google Scholar 

  • Ruiz KA, Pelletier JM, Wang Y, Feng MJ, Behr JS, Ðào TQ, Li B, Kliebenstein D, Harada JJ, Jenik PD (2021) A reevaluation of the role of the ASIL trihelix transcription factors as repressors of the seed maturation program. Plant Direct 5(10):e345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahollari B, Vadassery J, Varma A, Oelmüller R (2007) A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus Piriformospora indica in Arabidopsis thaliana. Plant J 50(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Su J, Fan S, Li L, Wei H, Wang C, Wang H, Song M, Zhang C, Gu L, Zhao S (2016) Detection of favorable QTL alleles and candidate genes for lint percentage by GWAS in Chinese upland cotton. Front Plant Sci 7:1576

    Article  PubMed  PubMed Central  Google Scholar 

  • Su J, Wang C, Ma Q, Zhang A, Shi C, Liu J, Zhang X, Yang D, Ma X (2020) An RTM-GWAS procedure reveals the QTL alleles and candidate genes for three yield-related traits in upland cotton. BMC Plant Biol 20(1):416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Wang X, Liu Z, Gu Q, Zhang Y, Li Z, Ke H, Yang J, Wu J, Wu L (2018) A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton. Theor Appl Genet 131(11):2413–2425

    Article  CAS  PubMed  Google Scholar 

  • Tanaka O, Takimoto A (1978) Effect of nitrate concentration in the medium on the flowering of Lemna paucicostata 6746. Plant Cell Physiol 19(4):701–704

    CAS  Google Scholar 

  • Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192

    Article  PubMed  Google Scholar 

  • Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V (2014) Genetic diversity and population structure in the US upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127(2):283–295

    Article  PubMed  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164–e164

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, He S, Sun G, Pan Z, Sun J, Geng X, Peng Z, Gong W, Wang L, Pang B (2021) Favorable pleiotropic loci for fiber yield and quality in upland cotton (Gossypium hirsutum). Sci Rep 11(1):1–12

    Google Scholar 

  • Wang M, Qi Z, Thyssen GN, Naoumkina M, Jenkins JN, McCarty JC, Xiao Y, Li J, Zhang X, Fang DD (2022) Genomic interrogation of a MAGIC population highlights genetic factors controlling fiber quality traits in cotton. Commun Biol 5(1):1–12

    Google Scholar 

  • Wen Y-J, Zhang H, Ni Y-L, Huang B, Zhang J, Feng J-Y, Wang S-B, Dunwell JM, Zhang Y-M, Wu R (2018) Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform 19(4):700–712

    Article  PubMed  Google Scholar 

  • Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus, Gossypium. Cotton 57:25–44

    Article  Google Scholar 

  • Yanagisawa S (2014) Transcription factors involved in controlling the expression of nitrate reductase genes in higher plants. Plant Sci 229:167–171

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y (2019) Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun 10(1):1–13

    Google Scholar 

  • Zafar MM, Manan A, Razzaq A, Zulfqar M, Saeed A, Kashif M, Khan AI, Sarfraz Z, Mo H, Iqbal MS (2021) Exploiting agronomic and biochemical traits to develop heat resilient cotton cultivars under climate change scenarios. Agronomy 11(9):1885

    Article  Google Scholar 

  • Zafar MM, Zhang Y, Farooq MA, Ali A, Firdous H, Haseeb M, Fiaz S, Shakeel A, Razzaq A, Ren M (2022) Biochemical and associated agronomic traits in Gossypium hirsutum L. under high temperature stress. J Natural Fibers 19(8): 3063-3082

  • Zafar MM, Razzaq A, Farooq MA, Rehman A, Firdous H, Shakeel A, Mo H, Ren M, Ashraf M, Youlu Y (2020) Genetic variation studies of ionic and within boll yield components in cotton (Gossypium Hirsutum L.) under salt stress. 9(4): 1–20

  • Zhang Y-M, Zhang S-Z, Zheng C-C (2014) Genomewide analysis of LATERAL ORGAN BOUNDARIES Domain gene family in Zea mays. J Genet 93(1):79–91

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-M, Jia Z, Dunwell JM (2019) The applications of new multi-locus GWAS methodologies in the genetic dissection of complex traits. Frontiers Media SA

    Book  Google Scholar 

  • Zhu T, Liang C, Meng Z, Sun G, Meng Z, Guo S, Zhang R (2017) CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol 17(1):1–9

    Article  CAS  Google Scholar 

  • Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, Huang Y, Zhang D, Ni Z, Chen Q (2020) Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC Plant Biol 20(1):1–13

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP-2024R241), King Saud University, Riyadh, Saudi Arabia. Moreover, authors are thankful to Institute of Cotton Research, Chinese Academy of Agricultural Sciences for providing research related facilities to carry out present investigation.

Funding

No specific funding has been received to carry out present research work.

Author information

Authors and Affiliations

Authors

Contributions

XD and ZP designed the study, ZI, MSI, ZS conducted research, MFN, DH, MZ, S and TM helped ZI to perform the experiments and data collection. QUZ, AZ, MSI, ZP, DH and TM helped in data analysis, software standardization and writing of original draft. SF, SA, IK, AMA, SA and KAA provided technical expertise to improve the article and helped in funding acquisition. All authors review and edited the manuscript.

Corresponding authors

Correspondence to Sajid Fiaz or Xiongming Du.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, Z., Iqbal, M.S., Alamery, S. et al. Genome-wide association study reveals novel genes on different chromosomal positions regulating boll weight in upland cotton (Gossypium hirsutum L.). Genet Resour Crop Evol 71, 785–799 (2024). https://doi.org/10.1007/s10722-023-01657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-023-01657-x

Keywords

Navigation