Skip to main content
Log in

M0.9Y0.1O2–δ–BiScO3 (M = Zr, Ce) — Preparation, Structure, and Ionic Conductivity

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Samples of the solid solutions Zr0.9Y0.1O2–δ–BiScO3 and Ce0.9Y0.1O2–δ–BiScO3 were obtained by solid-phase synthesis. X-ray diffraction revealed that the system Zr0.9Y0.1O2–δ–BiScO3 corresponds to a tetragonal structure with space symmetry group P42/nmc. The ceramic Ce0.9Y0.1O2–δ–BiScO3 is two-phase and is characterized by a cubic structure with space symmetry group \(Fm\overline{3 }m\) and Ia–3. It was ascertained by means of impedance spectroscopy that the system Ce0.9Y0.1O2–δ–BiScO3 has the highest electrical conductivity, but the activation energy is lower in the ceramic Zr0.9Y0.1O2-δ–BiScO3, equal to 0.3 eV in the temperature range 420 – 680°C. The activation energy of the solid solution Ce0.9Y0.1O2–δ–BiScO3 is equal to 1.0 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. J. Zhang, Ch. Lenser, N. H. Menzler, and O. Guillon, “Comparison of solid oxide fuel cell (SOFC) electrolyte materials for operation at 500°C,” Solid State Ionics, 344, 115 – 138 (2020).

    Article  Google Scholar 

  2. S. Dwivedi, “Solid oxide fuel cell: Materials for anode, cathode and electrolyte,” Int. J. Hydrogen Energy, 45, 23988 – 24013 (2020).

    Article  CAS  Google Scholar 

  3. E. L. Brosha, R. Mukundan, D. R. Brown, et al., “Development of ceramic mixed potential sensors for automotive applications,” Solid State Ionics, 148, 61 – 69 (2002).

    Article  CAS  Google Scholar 

  4. B. Singh, S. Ghosh, S. Aich, and B. Roy, “Low temperature solid oxide electrolytes (LT-SOE): Areview,” J. Power Sources, 339, 103 – 135 (2017).

    Article  CAS  Google Scholar 

  5. D. W. Strickler and W. G. Carlson, “Ionic conductivity of cubic solid solutions in the system CaO–Y2O3–ZrO2,” J. Am. Ceram. Soc., 47, 122 – 127 (1964).

    Article  CAS  Google Scholar 

  6. J. H. Lee, S. M. Yoon, B. K. Kim, et al., “Electrical conductivity and defect structure of yttria-doped ceria-stabilized zirconia,” Solid State Ionics, 144, 175 – 184 (2001).

    Article  CAS  Google Scholar 

  7. H. Inaba and H. Tagawa, “Review Ceria-based solid electrolytes,” Solid State Ionics, 83, 1 – 16 (1996). URL: https://doi.org/10.1016/0167-2738(95)00229-4

  8. J. Kang, W. Feng, D. Guo, et al., “Performance optimization of Ca and Y co-doped CeO2-based electrolyte for intermediate-temperature solid oxide fuel cells,” J. Alloys Comp., 913, 165 – 317 (2022). URL: https://doi.org/10.1016/j.jallcom.2022.165317

  9. L. S. Mahmud, A. Muchtar, and M. R. Somalu, “Challenges in fabricating planar solid oxide fuel cells: A review,” Renewable and Sustainable Energy Rev., 72, 105 – 116 (2017). URL: https://doi.org/10.1016/j.rser.2017.01.019

  10. M. Irshad, K. Siraj, R. Raza, et al., “Description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance,” Appl. Sci., 6(3), 75 (2016). URL: https://doi.org/10.3390/app6030075

  11. H. Shi, C. Su, R. Ran, et al., “Review. Electrolyte materials for intermediate-temperature solid oxide fuel cells,” Progr. Natural Sci.: Mater. Int., 30(6), 764 – 774 (2020). URL: https://doi.org/10.1016/j.pnsc.2020.09.003

  12. S. Lubke and H. D. Wiemhofer, “Electronic conductivity of Gd-doped ceria with additional Pr-doping,” Solid State Ion., 117, 229 – 243 (1999). URL: https://doi.org/10.1016/S0167-2738(98)00408-1

  13. P. Shu, H.-D.Wiemhöfer, U. Guth, et al., “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionics, 89, 179 – 196 (1996). URL: https://doi.org/10.1016/0167-2738(96)00348-7

  14. D. W. Joh, J. H. Park, D. Kim, et al., “Functionally graded bismuth oxide/zirconia bilayer electrolytes for high-performance intermediate-temperature solid oxide fuel cells (IT-SOFCs),” ACS Appl. Mater. Interfaces, 9, 8443 – 8449 (2017). https://doi.org/10.1021/acsami.6b16660

    Article  CAS  Google Scholar 

  15. D. W. Joh, J. H. Park, D. Y. Kim, et al., “High performance zirconia-bismuth oxide nanocomposite electrolytes for low temperature solid oxide fuel cells,” J. Power Sources, 320, 267 – 273 (2016).

    Article  CAS  Google Scholar 

  16. L. Miao, J. Hou, K. Dong, and W. Liu, “A strategy for improving the sinterability and electrochemical properties of ceria-based LT-SOFCs using bismuth oxide additive,” Int. J. Hydrogen Energy, 44(11), 5447 – 5453 (2019). URL: https://doi.org/10.1016/j.ijhydene.2018.10.223

  17. O. N. Ivanov, I. V. Sudzhanskaya, and M. N. Yapryntsev, “Manufacture, structure, and electric conductivity of ZrO2–SrTiO3–BiScO3 ceramics,” Glass Ceram., 72(11), 413 – 416 (2016). https://doi.org/10.1007/s10717-016-9800-4]

    Article  CAS  Google Scholar 

  18. I. V. Sudzhanskaya, M. N. Yaprintsev, Yu. S. Nekrasova, et al. “Effect of BiScO3 additive on the structure and electrical properties of the Y2O3–ZrO2–SrTiO3 system,” J. Nano- and Electronic Phys., 11(1), 01018 – 01022 (2019). https://doi.org/10.21272/jnep.11(1).01018

  19. V. V. Deshmukh, C. R. Ravikumar, M. R. Anil Kumar, et al. “Structure, morphology, and electrochemical properties of SrTiO3 Perovskite: Photocatalytic and supercapacitor applications,” Envir. Chem. Ecotoxic., 3, 241 – 248 (2021). URL: https://doi.org/10.1016/j.enceco.2021.07.001

  20. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides,” Acta Cryst., A32, 751 (1976).

    Article  CAS  Google Scholar 

  21. B. Singh, S. Ghosh, S. Aich, and B. Roy, “Low temperature solid oxide electrolytes (LT-SOE): Areview,” J. Power Sources, 339, 103 – 135 (2017).

    Article  CAS  Google Scholar 

  22. T.-H. Yeh and C.-C. Chou, “Ionic conductivity investigation in samarium and strontium co-doped ceria system,” Phys. Scr., 129, 303 – 307 (2007). URL: https://doi.org/10.1088/0031-8949/2007/T129/067

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Sudzhanskaya.

Additional information

Translated from Steklo i Keramika, No. 6, pp. 54 – 59, June, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudzhanskaya, I.V., Sotnikova, V.S. M0.9Y0.1O2–δ–BiScO3 (M = Zr, Ce) — Preparation, Structure, and Ionic Conductivity. Glass Ceram 80, 250–253 (2023). https://doi.org/10.1007/s10717-023-00592-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-023-00592-8

Keywords

Navigation