Skip to main content
Log in

Evaluation of remote sensing techniques-based water quality monitoring for sustainable hydrological applications: an integrated FWZIC-VIKOR modelling approach

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Evaluating remote sensing techniques (RST)-based water quality monitoring systems in hydrological applications is a complex multi-attribute decision-making (MADM) problem due to several integrated issues. These issues include the need to consider 15 evaluation criteria, the importance of these criteria in relation to their application and network infrastructure, data variation, and trade-offs and conflicts between them. Therefore, this study proposes an MADM integrated modelling approach to weight these criteria and rank the selected RSTs using the “Fuzzy Weighted with Zero Inconsistency” (FWZIC) method coupled with the “Vlse-kriterijumska Optimizcija I Kaompromisno Resenje” (VIKOR) method. First, a decision matrix was developed for the evaluation criteria and their intersection with various RSTs in different network categories. Next, the assessment criteria were weighted using FWZIC, followed by ranking the RSTs for each category using VIKOR. The findings reveal that the criteria weighting varied across categories, as assigned by specialists-based FWZIC. For example, the “data acquisition system complexity” criterion received the maximum weight (w = 0.081) for mesh-based sensing and the lowest (w = 0.057) for cellular-based sensing. Using the obtained weights and based on the ascending order of the performance score value (Q), various RSTs were benchmarked using VIKOR. This includes (n = 22) RSTs in fixed star, (n = 8) RSTs in mesh sensing, (n = 6) RSTs in cellular sensing, (n = 3) RSTs in fixed cable sensing, and (n = 2) RSTs in movable sensing. Finally, the evaluation process for the benchmarked RSTs involved systematic ranking, sensitivity analysis, and comparison analysis, which confirmed the robustness of the proposed approach across all RST categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

The data used to support the findings of this study are included within this article. However, the reader may contact the corresponding author for more details on the data.

References

  • Ab Aziz, M. A., Abas, M. F., Bashri, M. K. A. A., Saad, N. M., & Ariff, M. (2019). Evaluating IoT based passive water catchment monitoring system data acquisition and analysis. Bulletin of Electrical Engineering and Informatics, 8(4), 1373–1382.

    Google Scholar 

  • Abdulkareem, K. H., Arbaiy, N., Zaidan, A., Zaidan, B., Albahri, O., Alsalem, M., Making, D. (2020). A novel multi-perspective benchmarking framework for selecting image dehazing intelligent algorithms based on BWM and group VIKOR techniques. 1–49.

  • Abdulwahid, S. N., Mahmoud, M. A., Zaidan, B. B., Alamoodi, A. H., Garfan, S., Talal, M., & Zaidan, A. A. (2022). A comprehensive review on the behaviour of motorcyclists: Motivations, issues, challenges, substantial analysis and recommendations. International Journal of Environmental Research and Public Health, 19(6), 3552.

    Article  Google Scholar 

  • Adeniyi, A. G., & Ighalo, J. O. (2019). Biosorption of pollutants by plant leaves: An empirical review. Journal of Environmental Chemical Engineering, 7(3), 103100.

    Article  CAS  Google Scholar 

  • Alaa, M., Albakri, I. S. M. A., Singh, C. K. S., Hammed, H., Zaidan, A., Zaidan, B., & Almahdi, E. (2019). Assessment and ranking framework for the English skills of pre-service teachers based on fuzzy Delphi and TOPSIS methods. IEEE Access, 7, 126201–126223.

    Article  Google Scholar 

  • Alamleh, A., Albahri, O., Zaidan, A., Alamoodi, A., Albahri, A., Zaidan, B., Baqer, M. (2022). Multi-attribute decision-making for intrusion detection systems: A systematic review. International Journal of Information Technology & Decision Making.

  • Alamoodi, A., Albahri, O., Zaidan, A., AlSattar, H., Ahmed, M. A., Pamucar, D., Mahmoud, M. S. (2022). New extension of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score method based on cubic pythagorean fuzzy environment: A benchmarking case study of sign language recognition systems. International Journal of Fuzzy Systems, 1–18.

  • Albahri, A., Al-Obaidi, J. R., Zaidan, A., Albahri, O., Hamid, R. A., Zaidan, B., & Hashim, M. (2020). Multi-biological laboratory examination framework for the prioritization of patients with COVID-19 based on integrated AHP and Group VIKOR methods. International Journal of Information Technology & Decision Making, 19(05), 1247–1269.

    Article  Google Scholar 

  • Albahri, A., Albahri, O., Zaidan, A., Zaidan, B., Hashim, M., Alsalem, M., Enaizan, O. J. I. A. (2019). Based multiple heterogeneous wearable sensors: A smart real-time health monitoring structured for hospitals distributor. 7, 37269–37323.

  • Almahdi, E., Zaidan, A., Zaidan, B., Alsalem, M., Albahri, O., & Albahri, A. J. J. O. M. S. (2019). Mobile patient monitoring systems from a benchmarking aspect: Challenges, open issues and recommended solutions. 43(7), 207.

  • Almutairi, K., Hosseini Dehshiri, S. J., Hosseini Dehshiri, S. S., Mostafaeipour, A., Hoa, A. X., & Techato, K. (2022). Determination of optimal renewable energy growth strategies using SWOT analysis, hybrid MCDM methods, and game theory: A case study. International Journal of Energy Research, 46(5), 6766–6789.

    Article  Google Scholar 

  • Alsalem, M., Alamoodi, A., Albahri, O., Dawood, K., Mohammed, R., Alnoor, A., Jumaah, F. (2022). Multi-criteria decision-making for coronavirus disease 2019 applications: A theoretical analysis review. Artificial Intelligence Review, 1–84.

  • Alsalem, M. A., Mohammed, R., Albahri, O. S., Zaidan, A. A., Alamoodi, A. H., Dawood, K., Aickelin, U. (2021). Rise of multiattribute decision‐making in combating COVID‐19: A systematic review of the state‐of‐the‐art literature. International Journal of Intelligent Systems.

  • Amareshwar, E., & Jahan, S. (2019). Raspberry pi based water quality monitoring and flood alerting system using IoT. International Journal of Innovative Technology and Exploring Engineering, 8(4S2), 237–240.

  • Amit Ganatra, N. D. (2020). An IoT based real time smart water quality monitoring and controlling system using waspmote and ZigBee module. International Journal of Advanced Science and Technology, 29(5s), 1147–1151.

    Google Scholar 

  • Angani, A., Lee, J. C., & Shin, K. J. (2019). Vertical recycling aquatic system for internet-of-things-based smart fish farm. Sensors and Materials, 31(12), 3987–3998.

    Article  CAS  Google Scholar 

  • Arqub, O. A. (2017). Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Computing and Applications, 28(7), 1591–1610.

    Article  Google Scholar 

  • Arqub, O. A., Al-Smadi, M., Momani, S., & Hayat, T. (2017). Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Computing, 21(23), 7191–7206.

    Article  Google Scholar 

  • Arqub, O. A., Mohammed, A.-S., Momani, S., & Hayat, T. (2016). Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Computing, 20(8), 3283–3302.

    Article  Google Scholar 

  • Babu Loganathan, G., Mohan, E., & Siva Kumar, R. (2019). IoT based water and soil quality monitoring system. International Journal of Mechanical Engineering and Technology (IJMET), 10(2), 537–541.

    Google Scholar 

  • Biswas, S., & Joshi, N. (2023). A performance based ranking of initial public offerings (IPOs) in India. Journal of Decision Analytics and Intelligent Computing, 3(1), 15–32.

    Article  Google Scholar 

  • Bozanic, D., Milic, A., Tešic, D., Salabun, W., & Pamucar, D. (2021). D numbers—FUCOM—Fuzzy RAFSI model for selecting the group of construction machines for enabling mobility. Facta Universitatis, Series: Mechanical Engineering, 19(3), 447–471. https://doi.org/10.22190/FUME210318047B

  • Baydaş, M., Elma, O. E., & Pamučar, D. (2022). Exploring the specific capacity of different multi criteria decision making approaches under uncertainty using data from financial markets. Expert Systems with Applications, 197, 116755.

    Article  Google Scholar 

  • Bhagavan, K., Krishna, R. V., Gangadhar, A. C. L., & Arun, M. (2018). An efficient method in real time for water quality monitoring using internet of things. International Journal of Engineering and Technology (UAE), 7(2.32), 170–173.

  • Bhattacharjee, P., Dey, V., & Mandal, U. (2022). Failure mode and effects analysis (FMEA) using interval number based BWM—MCDM approach: Risk expected value (REV) method. Soft Computing, 26(22), 12667–12688.

    Article  Google Scholar 

  • Bojja, P., Kumari, P., Preetha, P., Raga, S. N. P., & Akhila, P. (2019). Portable drinking water quality measurement system for implementation of smart villages. International Journal of Recent Technology and Engineering, 7, 764–767.

    Google Scholar 

  • Boonsong, W., Ismail, W., Shinohara, N., Nameh, S. M. I. S., Alifah, S., Hafiz, K., & Kamaludin, T. A. (2020). Real-time water quality monitoring of aquaculture pond using wireless sensor network and internet of things. Journal of Theoretical and Applied Information Technology, 98(22).

  • Chen, Y., & Han, D. (2018). Water quality monitoring in smart city: A pilot project. Automation in Construction, 89, 307–316.

    Article  Google Scholar 

  • Danh, L. V. Q., Dung, D. V. M., Danh, T. H., & Ngon, N. C. (2020). Design and deployment of an IoT-based water quality monitoring system for aquaculture in Mekong Delta. International Journal of Mechanical Engineering and Robotics Research, 9(8), 1170–1175.

    Article  Google Scholar 

  • Dasgupta, S., Zambare, M., Kulkarni, N., & Shaligram, A. (2019). Real-time water quality monitoring system analysis of Pashan Lake, Maharashtra, India. International Journal of Engineering and Advanced Technology (IJEAT), 8(6).

  • Dasig Jr, D. D. (2019). Implementing zigbee-based wireless sensor network in the design of water quality monitoring system.

  • De Vita, F., Bruneo, D., & Das, S. K. (2020). On the use of a full stack hardware/software infrastructure for sensor data fusion and fault prediction in industry 4.0. Pattern Recognition Letters, 138, 30–37.

    Article  Google Scholar 

  • Ekere, N. R., Agbazue, V. E., Ngang, B. U., & Ihedioha, J. N. (2019). Hydrochemistry and Water Quality Index of groundwater resources in Enugu north district, Enugu, Nigeria. Environmental Monitoring and Assessment, 191(3), 1–15.

    Article  CAS  Google Scholar 

  • Elijah, O., Rahman, T. A., Leow, C., Yeen, H., Sarijari, M., Aris, A., Chua, T. (2018). A concept paper on smart river monitoring system for sustainability in river. International Journal of Integrated Engineering, 10(7).

  • Emenike, C., Tenebe, I., Omole, D., Ngene, B., Oniemayin, B., Maxwell, O., & Onoka, B. (2017). Accessing safe drinking water in sub-Saharan Africa: Issues and challenges in South-West Nigeria. Sustainable Cities and Society, 30, 263–272.

    Article  Google Scholar 

  • Esakki, B., Ganesan, S., Mathiyazhagan, S., Ramasubramanian, K., Gnanasekaran, B., Son, B., Choi, J. S. (2018). Design of amphibious vehicle for unmanned mission in water quality monitoring using internet of things. Sensors, 18(10), 3318.

  • Farhadi, H., Esmaeily, A., & Najafzadeh, M. (2022). Flood monitoring by integration of remote sensing technique and multi-criteria decision making method. Computers & Geosciences, 160, 105045.

    Article  Google Scholar 

  • Fazlollahtabar, H., & Kazemitash, N. (2021). Green supplier selection based on the information system performance evaluation using the integrated Best-Worst Method. Facta Universitatis, Series: Mechanical Engineering, 19(3), 345–360. https://doi.org/10.22190/FUME201125029F

  • Fathoni, H., Miao, H.-Y., Chen, C.-Y., & Yang, C.-T. (2020). A monitoring system of water quality Tunghai Lake using LoRaWAN. Paper presented at the 2020 International Conference on Pervasive Artificial Intelligence (ICPAI).

  • Gehlot, A., Singh, R., Samkaria, R., Choudhury, S., & De, A. (2018). Kamlesh, air quality and water quality monitoring using XBee and internet of things. International Journal of Engineering & Technology (UAE), 7(2).

  • Hadi, E., & Heidari, A. (2021). Development of an integrated tool based on life cycle assessment, Levelized energy, and life cycle cost analysis to choose sustainable Facade Integrated Photovoltaic Systems. Journal of Cleaner Production, 293, 126117.

    Article  CAS  Google Scholar 

  • Haoues, S., Yallese, M. A., Belhadi, S., Chihaoui, S., & Uysal, A. (2023). Modeling and optimization in turning of PA66-GF30% and PA66 using multi-criteria decision-making (PSI, MABAC, and MAIRCA) methods: A comparative study. The International Journal of Advanced Manufacturing Technology, 124(7–8), 2401–2421.

    Article  Google Scholar 

  • Huan, J., Li, H., Wu, F., & Cao, W. (2020). Design of water quality monitoring system for aquaculture ponds based on NB-IoT. Aquacultural Engineering, 90, 102088.

    Article  Google Scholar 

  • Ibrahim, S. N., Asnawi, A., Abdul Malik, N., Mohd Azmin, N., Jusoh, A., & Mohd Isa, F. (2018). Web based water turbidity monitoring and automated filtration system: IoT application in water management. International Journal of Electrical & Computer Engineering (2088–8708), 8(4).

  • Ismael, S., Alias, A., Zaidan, A., Zaidan, B., Alsattar, H., Qahtan, S., & Mohammed, R. (2022). Toward sustainable transportation: A pavement strategy selection based on the extension of dual-hesitant fuzzy multicriteria decision-making methods. IEEE Transactions on Fuzzy Systems, 31(2), 380–393.

    Article  Google Scholar 

  • Kaliszewski, I., & Podkopaev, D. (2016). Simple additive weighting: A metamodel for multiple criteria decision analysis methods. Expert Systems with Applications, 54, 155–161.

    Article  Google Scholar 

  • Kiptum, C. K., Bouraima, M. B., Stević, Ž., Okemwa, S., Birech, S., & Qiu, Y. J. (2022). Sustainable strategies for the successful operation of the bike-sharing system using an ordinal priority approach. Journal of Engineering Management and Systems Engineering, 1(2), 43–50. https://doi.org/10.56578/jemse010201

  • Kalpana, D., & Venkatesulu, S. (2020). IOT based public watering system with quality measurement. European Journal of Molecular & Clinical Medicine, 7(01).

  • Kamidi, P., Sabbi, V., & Sanniti, R. (2019). IoT based smart water quality monitoring and prediction system. Int. J. Eng. Adv. Technol, 8(5), 484–489.

    Google Scholar 

  • Krishnan, E., Mohammed, R., Alnoor, A., Albahri, O. S., Zaidan, A. A., Alsattar, H., & Hamid, R. A. (2021a). Interval type 2 trapezoidal-fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e-tourism applications. International Journal of Intelligent Systems, 36(9), 4723–4774.

    Article  Google Scholar 

  • Krishnan, E., Mohammed, R., Alnoor, A., Albahri, O. S., Zaidan, A. A., Alsattar, H., Hamid, R. A. (2021b). Interval type 2 trapezoidal‐fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e‐tourism applications. International Journal of Intelligent Systems.

  • Kruse, P. (2018). Review on water quality sensors. Journal of Physics D: Applied Physics, 51(20), 203002.

    Article  Google Scholar 

  • Kumar, M. J. V., & Samalla, K. (2019). Design and development of water quality monitoring system in IoT. International Journal of Recent Technology and Engineering (IJRTE), 7, 527–533.

    Google Scholar 

  • Lalithadevi, B., Yadav, A., Pandey, A., & Adhikari, M. (2019). Iot based wsn ground water monitoring system with cloud-based monitoring as a service (maas) and prediction using machine learning. International Journal of Innovative Technology and Exploring Engineering Regular Issue, 9(1), 816–821.

    Article  Google Scholar 

  • Lin, Y.-B., & Tseng, H.-C. (2019). FishTalk: An IoT-based mini aquarium system. IEEE Access, 7, 35457–35469.

    Article  Google Scholar 

  • Lin, Y.-P., Mukhtar, H., Huang, K.-T., Petway, J. R., Lin, C.-M., Chou, C.-F., & Liao, S.-W. (2020). Real-time identification of irrigation water pollution sources and pathways with a wireless sensor network and blockchain framework. Sensors, 20(13), 3634.

    Article  CAS  Google Scholar 

  • Ling, L., Anping, R., & Di, X. (2023). Proposal of a hybrid decision-making framework for the prioritization of express packaging recycling patterns. Environment, Development and Sustainability, 25(3), 2610–2647.

    Article  Google Scholar 

  • Llaban, A., & Ella, V. (2022). Conventional and sensor-based streamflow data acquisition system for sustainable water resources management and agricultural applications: an extensive review of literature. Paper presented at the IOP Conference Series: Earth and Environmental Science.

  • Loyola, L. G., & Lacatan, L. L. (2020). Water quality evaluation system for prawn (Penaeus monodon) using iot device and decision tree algorithm. Journal of Critical Reviews, 7(8), 983–988.

    Google Scholar 

  • Mahmoud, U. S., Albahri, A. S., AlSattar, H. A., Zaidan, A. A., Talal, M., Mohammed, R. T., Qahtan, S. (2022). DAS benchmarking methodology based on FWZIC II and FDOSM II to support industrial community characteristics in the design and implementation of advanced driver assistance systems in vehicles. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-022-04201-4

  • Martínez, R., Vela, N., El Aatik, A., Murray, E., Roche, P., & Navarro, J. M. (2020). On the use of an IoT integrated system for water quality monitoring and management in wastewater treatment plants. Water, 12(4), 1096.

    Article  Google Scholar 

  • Miry, A. H., & Aramice, G. A. (2020). Water monitoring and analytic based ThingSpeak. International Journal of Electrical and Computer Engineering, 10(4), 3588.

    Google Scholar 

  • Mohammed, K., Zaidan, A., Zaidan, B., Albahri, O., Albahri, A., Alsalem, M., biomedicine, p. i. (2020). Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases. 185, 105151.

  • Mohammed, R., Zaidan, A., Yaakob, R., Sharef, N., Abdullah, R., Zaidan, B., Abdulkareem, K. (2021). Determining Importance of Many-Objective Optimisation Competitive Algorithms Evaluation Criteria Based on a Novel Fuzzy-Weighted Zero-Inconsistency Method. International Journal of Information Technology & Decision Making, 1–47.

  • Nădăban, S., Dzitac, S., & Dzitac, I. (2016). Fuzzy topsis: A general view. Procedia Computer Science, 91, 823–831.

    Article  Google Scholar 

  • Nadu, T. An underground pipeline water quality monitoring using Iot devices. European Journal of Molecular & Clinical Medicine, 7(08), 2020.

  • Nie, X., Fan, T., Wang, B., Li, Z., Shankar, A., & Manickam, A. (2020). Big data analytics and IoT in operation safety management in under water management. Computer Communications, 154, 188–196.

    Article  Google Scholar 

  • Ogunniyi, L. T., Sanusi, W. A., & Ezekiel, A. A. (2011). Determinants of rural household willingness to pay for safe water in Kwara State, Nigeria. Aquaculture, Aquarium, Conservation & Legislation, 4(5), 660–669.

    Google Scholar 

  • Olukanni, D. O., Ebuetse, M. A., & Anake, W. U. (2014). Drinking water quality and sanitation issues: A survey of a semi-urban setting in Nigeria. International Journal of Research in Engineering and Science, 2(11), 58–65.

    Google Scholar 

  • Oommen, A. K., Saji, A., Joseph, S., & Kuriakose, B. P. (2019). Automated water quality monitoring system for aquaponics. Int. Res. J. Eng. Technol, 7832, 7832–7841.

    Google Scholar 

  • Pantjawati, A. B., Purnomo, R., Mulyanti, B., Fenjano, L., Pawinanto, R., & Nandiyanto, A. B. D. (2020). Water quality monitoring in Citarum River (Indonesia) using IoT (internet of thing). Journal of Engineering Science and Technology, 15(6), 3661–3672.

    Google Scholar 

  • Pasika, S., & Gandla, S. T. (2020). Smart water quality monitoring system with cost-effective using IoT. Heliyon, 6(7), e04096.

    Article  Google Scholar 

  • Pamucar, D., Žižović, M., Biswas, S., & Božanić, D. (2021). A new logarithm methodology of additive weights (LMAW) for multi-criteria decision-making: application in logistics. Facta Universitatis, Series: Mechanical Engineering, 19(3), 361–380. https://doi.org/10.22190/FUME210214031P

  • Puska, A., Štilić, A., & Stojanović, I. (2023). Approach for multi-criteria ranking of Balkan countries based on the index of economic freedom. Journal of Decision Analytics and Intelligent Computing, 3(1), 1–14.

    Article  Google Scholar 

  • Pellerin, B. A., Stauffer, B. A., Young, D. A., Sullivan, D. J., Bricker, S. B., Walbridge, M. R., & Shaw, D. M. (2016). Emerging tools for continuous nutrient monitoring networks: Sensors advancing science and water resources protection. JAWRA Journal of the American Water Resources Association, 52(4), 993–1008.

    Article  Google Scholar 

  • Peng, X., Zhang, X., & Luo, Z. (2020). Pythagorean fuzzy MCDM method based on CoCoSo and CRITIC with score function for 5G industry evaluation. Artificial Intelligence Review, 53(5), 3813–3847.

    Article  Google Scholar 

  • Priya, S. K., Shenbagalakshmi, G., & Revathi, T. (2019). Architecture of smart sensors for real time drinking water quality and contamination detection in water distributed mains. Science and Technology, 22(3–4), 202–214.

    Google Scholar 

  • Qahtan, S., Sharif, K. Y., Zaidan, A., Alsattar, H., Albahri, O., Zaidan, B., Mohammed, R. (2022). Novel multi security and privacy benchmarking framework for blockchain-based IoT healthcare industry 4.0 systems. IEEE Transactions on Industrial Informatics, 18(9), 6415–6423.

  • Raheja, S., Obaidat, M. S., Kumar, M., Sadoun, B., & Bhushan, S. (2022). A hybrid MCDM framework and simulation analysis for the assessment of worst polluted cities. Simulation Modelling Practice and Theory, 118, 102540.

    Article  Google Scholar 

  • Rahmadya, B., Zaini, Z., & Muharam, M. (2020). Iot: A mobile application and multi-hop communication in wireless sensor network for water monitoring.

  • Ramadhan, A., Ali, A., & Kareem, H. (2020). Smart water-quality monitoring system based on enabled real-time internet of things. Journal of Engineering Science and Technology, 15(6), 3514–3527.

    Google Scholar 

  • Ramya, A., Rohini, R., & Ravi, S. (2019). Iot based smart monitoring system for fish farming. International Journal of Engineering and Advanced Technology, 8(6 Special Issue), 420–424.

  • Rasin, Z., & Abdullah, M. R. (2009). Water quality monitoring system using zigbee based wireless sensor network. International Journal of Engineering & Technology, 9(10), 24–28.

    Google Scholar 

  • Salih, M. M., Zaidan, B., & Zaidan, A. J. A. S. C. (2020). Fuzzy decision by opinion score method. 96, 106595.

  • Saparudin, F., Chee, T., Ab Ghafar, A., Majid, H., & Katiran, N. (2019). Wireless water quality monitoring system for high density aquaculture application. Indonesian Journal of Electrical Engineering and Computer Science, 13(2), 507–513.

    Article  Google Scholar 

  • Saravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality monitoring using Internet of Things in SCADA. Environmental Monitoring and Assessment, 190(9), 1–16.

    Article  Google Scholar 

  • Shareef, Z., & Reddy, S. (2019). Design, development and analysis of an IoT-based framework for monitoring aquaculture farms. International Journal of Mobile Network Design and Innovation, 9(3–4), 183–191.

    Article  Google Scholar 

  • Singh, R., Baz, M., Gehlot, A., Rashid, M., Khurana, M., Akram, S. V., & AlGhamdi, A. S. (2021). Water quality monitoring and management of building water tank using industrial internet of things. Sustainability, 13(15), 8452.

    Article  Google Scholar 

  • Sithole, M. P. P., Nwulu, N. I., & Dogo, E. M. (2019). Dataset for a wireless sensor network based drinking-water quality monitoring and notification system. Data in Brief, 27, 104813.

    Article  Google Scholar 

  • Somu, N., & Kowli, A. (2023). Evaluation of building energy demand forecast models using multi-attribute decision making approach. Energy and Built Environment.

  • Sousa, J. C., Ribeiro, A. R., Barbosa, M. O., Pereira, M. F. R., & Silva, A. M. (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines. Journal of Hazardous Materials, 344, 146–162.

    Article  CAS  Google Scholar 

  • Spandana, K., & Rao, V. S. (2018). Internet of things (Iot) based smart water quality monitoring system. International Journal of Engineering & Technology, 7(3.6), 259–262.

  • Tesic, D., Bozanic, D., Puska, A., Milic, A., & Marinkovic, D. (2023). Development of the MCDM fuzzy LMAW-grey MARCOS model for selection of a dump truck. Reports in Mechanical Engineering, 4(1), 1–17.

    Article  Google Scholar 

  • Tuzcu, S. E., & Türkoğlu, S. P. (2022). How vulnerable are high-income countries to the covid-19 pandemic? An MCDM approach. Decision Making: Applications in Management and Engineering, 5(2), 372–395.

    Google Scholar 

  • Talal, M., Ramli, K. N., Zaidan, A. A., Zaidan, B. B., & Jumaa, F. (2020). Review on car-following sensor based and data-generation mapping for safety and traffic management and road map toward ITS. Vehicular Communications, 100280. https://doi.org/10.1016/j.vehcom.2020.100280

  • Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using IoT and sensors. Sensors, 20(11), 3113.

    Article  CAS  Google Scholar 

  • Więckowski, J., Kizielewicz, B., Shekhovtsov, A., & Sałabun, W. (2023). How do the criteria affect sustainable supplier evaluation? A case study using multi-criteria decision analysis methods in a fuzzy environment. Journal of Engineering Management and Systems Engineering, 2(1), 37–52.

    Article  Google Scholar 

  • Wei, Y., Wu, Y., Zhang, X., Ren, J., & An, D. (2019). Fuzzy self-tuning PID-based intelligent control of an anti-wave buoy data acquisition control system. IEEE Access, 7, 166157–166164.

    Article  Google Scholar 

  • Yagmahan, B., & Yılmaz, H. (2023). An integrated ranking approach based on group multi-criteria decision making and sensitivity analysis to evaluate charging stations under sustainability. Environment, Development and Sustainability, 25(1), 96–121.

    Article  Google Scholar 

  • Yang, K., Zhu, N., Chang, C., Wang, D., Yang, S., & Ma, S. (2018). A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study. Energy, 165, 1085–1096.

    Article  CAS  Google Scholar 

  • Yildirim, B. F., & Kuzu Yıldırım, S. (2022). Evaluating the satisfaction level of citizens in municipality services by using picture fuzzy VIKOR method: 2014–2019 period analysis. Decision Making: Applications in Management and Engineering, 5(1), 50–66.

    Google Scholar 

  • Youssef, M. I., & Webster, B. (2022). A multi-criteria decision making approach to the new product development process in industry. Reports in Mechanical Engineering, 3(1), 83–93.

    Article  Google Scholar 

  • Yaroshenko, I., Kirsanov, D., Marjanovic, M., Lieberzeit, P. A., Korostynska, O., Mason, A., & Legin, A. (2020). Real-time water quality monitoring with chemical sensors. Sensors, 20(12), 3432.

    Article  CAS  Google Scholar 

  • Zamani-Sabzi, H., King, J. P., Gard, C. C., & Abudu, S. (2016). Statistical and analytical comparison of multi-criteria decision-making techniques under fuzzy environment. Operations Research Perspectives, 3, 92–117.

    Article  Google Scholar 

  • Zhang, J., Sheng, Y., Chen, W., Lin, H., Sun, G., & Guo, P. (2021). Design and analysis of a water quality monitoring data service platform. Cmc-Computers Materials & Continua, 66(1), 389–405.

    Article  Google Scholar 

  • Zulkifli, C. Z., Garfan, S., Talal, M., Alamoodi, A. H., Alamleh, A., Ahmaro, I. Y. Y., & Chiang, H. H. (2022). IoT-based water monitoring systems: A systematic review. Water, 14(22), 3621.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragan Pamucar.

Ethics declarations

Competing interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables

Table 21 Experts assessment

21,

Table 22 Experts assessment fuzzy numbers

22, and

Table 23 Experts assessment ratio

23.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talal, M., Alamoodi, A.H., Albahri, O.S. et al. Evaluation of remote sensing techniques-based water quality monitoring for sustainable hydrological applications: an integrated FWZIC-VIKOR modelling approach. Environ Dev Sustain (2023). https://doi.org/10.1007/s10668-023-03432-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-023-03432-5

Keywords

Navigation