Skip to main content
Log in

Influence of granite waste on mechanical and durability properties of fly ash-based geopolymer concrete

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Momentous issues like interminable manufacturing of cement, liberating colossal quantities of CO2 into the atmosphere, and enormous discarding of granite waste by various industries disturbing the ecological system are provoking to be an issue of global warming worldwide. This research has focused on efficacious reutilization of granite waste in the preparation of fly ash-based geopolymer concrete. Granite waste was reutilized as fractional replacement of natural fine aggregates (sand) in varied proportions from 0 to 20% by weight in 5% incremental order. The performance evaluation of geopolymer concrete incorporated with granite waste was carried out through strength and durability studies such as dry density, compressive strength, ultrasonic pulse velocity, modulus of elasticity, water permeability, chloride penetration depth, acid attack, and carbonation. Geopolymer concrete’s mass change was determined using thermogravimetric analysis and differential thermogravimetry. Reutilization of granite waste in the preparation of fly ash-based geopolymer concrete provides solution for issues related to waste management and improved several geopolymer concrete’s properties. All the strength and durability test results divulged that geopolymer concrete prepared with granite waste up to 15% substitution of natural fine aggregates possessed superiority regarding mechanical properties and durability characteristics in contrast with control geopolymer concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Aarthi, K., & Arunachalam, K. (2018). Durability studies on fibre reinforced self compacting concrete with sustainable wastes. Journal of Cleaner Production, 174, 247–255.

    Article  CAS  Google Scholar 

  • Adak, D., Sarkar, M., & Mandal, S. (2017). Structural performance of nano-silica modified fly-ash based geopolymer concrete. Construction and Building Materials, 135, 430–439.

    Article  CAS  Google Scholar 

  • Al-Azzawi, M., Yu, T., & Hadi, M. N. (2018). June). Factors affecting the bond strength between the fly ash-based geopolymer concrete and steel reinforcement. Structure, 14, 262–272.

    Article  Google Scholar 

  • Albitar, M., Ali, M. M., Visintin, P., & Drechsler, M. (2015). Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete. Construction and Building Materials, 83, 128–135.

    Article  Google Scholar 

  • Aliabdo, A. A., Abd Elmoaty, M., & Auda, E. M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28–41.

    Article  Google Scholar 

  • Aliabdo, A. A., Abd Elmoaty, M., & Salem, H. A. (2016). Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and Building Materials, 123, 581–593.

    Article  CAS  Google Scholar 

  • Al-Majidi, M. H., Lampropoulos, A. P., Cundy, A. B., Tsioulou, O. T., & Alrekabi, S. (2019). Flexural performance of reinforced concrete beams strengthened with fibre reinforced geopolymer concrete under accelerated corrosion. Structures, 19, 394–410.

    Article  Google Scholar 

  • Aly, A. M., El-Feky, M. S., Kohail, M., & Nasr, E. S. A. (2019). Performance of geopolymer concrete containing recycled rubber. Construction and Building Materials, 207, 136–144.

    Article  CAS  Google Scholar 

  • Ariffin, M. A. M., Bhutta, M. A. R., Hussin, M. W., Tahir, M. M., & Aziah, N. (2013). Sulfuric acid resistance of blended ash geopolymer concrete. Construction and building materials, 43, 80–86.

    Article  Google Scholar 

  • ASTM:C1202. (2007). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration.

  • ASTM:C267-01. (2012). Standard test methods for chemical resistance of mortars, grouts, and monolithic surfacings and polymer concretes.

  • ASTM:C469. (1994). Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression.

  • Binici, H., Shah, T., Aksogan, O., & Kaplan, H. (2008). Durability of concrete made with granite and marble as recycle aggregates. Journal of Materials Processing Technology, 208(1–3), 299–308.

    Article  Google Scholar 

  • BIS:1199. (1959). Methods of sampling and analysis of concrete.

  • BIS:13311. (1992). Indian standard non-destructive testing of concrete Method of test Ultrasonic pulse velocity.

  • BIS:383. (2016). Specification for coarse and fine aggregates from natural sources for concrete, Bureau of Indian Standards, New Delhi, India.

  • BIS:516. (1959). Methods of tests for strength of concrete, Bureau of Indian Standards, New Delhi, India.

  • Bisht, K., & Ramana, P. V. (2019). Waste to resource conversion of crumb rubber for production of sulphuric acid resistant concrete. Construction and Building Materials, 194, 276–286.

    Article  CAS  Google Scholar 

  • Bouaissi, A., Li, L. Y., Abdullah, M. M. A. B., & Bui, Q. B. (2019). Mechanical properties and microstructure analysis of FA-GGBS-HMNS based geopolymer concrete. Construction and Building Materials, 210, 198–209.

    Article  CAS  Google Scholar 

  • Cheah, C. B., Lim, J. S., & Ramli, M. B. (2019). The mechanical strength and durability properties of ternary blended cementitious composites containing granite quarry dust (GQD) as natural sand replacement. Construction and Building Materials, 197, 291–306.

    Article  Google Scholar 

  • Chindaprasirt, P., & Rattanasak, U. (2010). Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer. Waste Management, 30(4), 667–672.

    Article  CAS  Google Scholar 

  • CPC:18. (1988). Measurement of hardened concrete carbonation depth.

  • Deb, P. S., Nath, P., & Sarker, P. K. (2014). The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Materials and Design, 1980–2015(62), 32–39.

    Article  Google Scholar 

  • DIN:1048. (1991). Testing concrete: testing of hardened concrete specimens prepared in mould, Part 5, Deutsches Institut fur Normung, Germany.

  • Ganesan, N., Abraham, R., & Raj, S. D. (2015). Durability characteristics of steel fibre reinforced geopolymer concrete. Construction and Building Materials, 93, 471–476.

    Article  Google Scholar 

  • Ghannam, S., Najm, H., & Vasconez, R. (2016). Experimental study of concrete made with granite and iron powders as partial replacement of sand. Sustainable Materials and Technologies, 9, 1–9.

    Article  CAS  Google Scholar 

  • Gulsan, M. E., Alzeebaree, R., Rasheed, A. A., Nis, A., & Kurtoglu, A. E. (2019). Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber. Construction and Building Materials, 211, 271–283.

    Article  CAS  Google Scholar 

  • Gupta, L. K., & Vyas, A. K. (2018). Impact on mechanical properties of cement sand mortar containing waste granite powder. Construction and Building Materials, 191, 155–164.

    Article  Google Scholar 

  • Gupta, T., Chaudhary, S., & Sharma, R. K. (2016). Mechanical and durability properties of waste rubber fiber concrete with and without silica fume. Journal of Cleaner Production, 112, 702–711.

    Article  CAS  Google Scholar 

  • Gupta, T., Patel, K. A., Siddique, S., Sharma, R. K., & Chaudhary, S. (2019). Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN. Measurement, 147, 106870.

    Article  Google Scholar 

  • Gupta, T., Sharma, R. K., & Chaudhary, S. (2015). Influence of waste tyre fibers on strength, abrasion resistance and carbonation of concrete. Scientia Iranica, 22(4), 1481–1489.

    Google Scholar 

  • Gupta, T., Siddique, S., Sharma, R. K., & Chaudhary, S. (2018). Lateral force microscopic examination of calcium silicate hydrate in rubber ash concrete. Construction and Building Materials, 179, 461–467.

    Article  CAS  Google Scholar 

  • Hassan, A., Mourad, A. H. I., Rashid, Y., Ismail, N., & Laghari, M. S. (2019). Thermal and structural performance of geopolymer concrete containing phase change material encapsulated in expanded clay. Energy and Buildings, 191, 72–81.

    Article  Google Scholar 

  • Huiskes, D. M. A., Keulen, A., Yu, Q. L., & Brouwers, H. J. H. (2016). Design and performance evaluation of ultra-lightweight geopolymer concrete. Materials and Design, 89, 516–526.

    Article  CAS  Google Scholar 

  • Hussin, M. W., Bhutta, M. A. R., Azreen, M., Ramadhansyah, P. J., & Mirza, J. (2015). Performance of blended ash geopolymer concrete at elevated temperatures. Materials and Structures, 48(3), 709–720.

    Article  CAS  Google Scholar 

  • Jain, A., Choudhary, R., Gupta, R., & Chaudhary, S. (2020a). Abrasion resistance and sorptivity characteristics of SCC containing granite waste. Materials Today: Proceedings, 27, 524–528.

    CAS  Google Scholar 

  • Jain, A., Gupta, R., & Chaudhary, S. (2019). Performance of self-compacting concrete comprising granite cutting waste as fine aggregate. Construction and Building Materials, 221, 539–552.

    Article  Google Scholar 

  • Jain, A., Gupta, R., & Chaudhary, S. (2020b). Sustainable development of self-compacting concrete by using granite waste and fly ash. Construction and Building Materials, 262, 120516.

    Article  Google Scholar 

  • Jain, A., Siddique, S., Gupta, T., Sharma, R. K., & Chaudhary, S. (2020c). Utilization of shredded waste plastic bags to improve impact and abrasion resistance of concrete. Environment, Development and Sustainability, 22(1), 337–362.

    Article  Google Scholar 

  • Jain, K. L., Sancheti, G., & Gupta, L. K. (2020d). Durability performance of waste granite and glass powder added concrete. Construction and Building Materials, 252, 119075.

    Article  CAS  Google Scholar 

  • Jena, S., & Panigrahi, R. (2019). Performance assessment of geopolymer concrete with partial replacement of ferrochrome slag as coarse aggregate. Construction and Building Materials, 220, 525–537.

    Article  CAS  Google Scholar 

  • Khan, I., Xu, T., Castel, A., Gilbert, R. I., & Babaee, M. (2019). Risk of early age cracking in geopolymer concrete due to restrained shrinkage. Construction and Building Materials, 229, 116840.

    Article  CAS  Google Scholar 

  • Kondepudi, K., & Subramaniam, K. V. (2019). Rheological characterization of low-calcium fly ash suspensions in alkaline silicate colloidal solutions for geopolymer concrete production. Journal of Cleaner Production, 234, 690–701.

    Article  CAS  Google Scholar 

  • Kong, D. L., & Sanjayan, J. G. (2010). Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and Concrete Research, 40(2), 334–339.

    Article  CAS  Google Scholar 

  • Koushkbaghi, M., Alipour, P., Tahmouresi, B., Mohseni, E., Saradar, A., & Sarker, P. K. (2019). Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes. Construction and Building Materials, 205, 519–528.

    Article  CAS  Google Scholar 

  • Lee, W. H., Wang, J. H., Ding, Y. C., & Cheng, T. W. (2019). A study on the characteristics and microstructures of GGBS/FA based geopolymer paste and concrete. Construction and Building Materials, 211, 807–813.

    Article  CAS  Google Scholar 

  • Li, N., Shi, C., Zhang, Z., Wang, H., & Liu, Y. (2019). A review on mixture design methods for geopolymer concrete. Composites Part B: Engineering, 178, 107490.

    Article  CAS  Google Scholar 

  • Liu, Y., Shi, C., Zhang, Z., Li, N., & Shi, D. (2020). Mechanical and fracture properties of ultra-high performance geopolymer concrete: Effects of steel fiber and silica fume. Cement and Concrete Composites, 112, 103665.

    Article  CAS  Google Scholar 

  • Luhar, S., Chaudhary, S., & Luhar, I. (2018). Thermal resistance of fly ash based rubberized geopolymer concrete. Journal of Building Engineering, 19, 420–428.

    Article  Google Scholar 

  • Luhar, S., Chaudhary, S., & Luhar, I. (2019). Development of rubberized geopolymer concrete: Strength and durability studies. Construction and Building Materials, 204, 740–753.

    Article  CAS  Google Scholar 

  • Ma, C. K., Awang, A. Z., & Omar, W. (2018). Structural and material performance of geopolymer concrete: A review. Construction and Building Materials, 186, 90–102.

    Article  CAS  Google Scholar 

  • Mashaly, A. O., Shalaby, B. N., & Rashwan, M. A. (2018). Performance of mortar and concrete incorporating granite sludge as cement replacement. Construction and Building Materials, 169, 800–818.

    Article  Google Scholar 

  • Meng, Q., Wu, C., Su, Y., Li, J., Liu, J., & Pang, J. (2019). A study of steel wire mesh reinforced high performance geopolymer concrete slabs under blast loading. Journal of Cleaner Production, 210, 1150–1163.

    Article  CAS  Google Scholar 

  • Mesgari, S., Akbarnezhad, A., & Xiao, J. Z. (2020). Recycled geopolymer aggregates as coarse aggregates for Portland cement concrete and geopolymer concrete: Effects on mechanical properties. Construction and Building Materials, 236, 117571.

    Article  CAS  Google Scholar 

  • Mimboe, A. G., Abo, M. T., Djobo, J. N. Y., Tome, S., Kaze, R. C., & Deutou, J. G. N. (2020). Lateritic soil based-compressed earth bricks stabilized with phosphate binder. Journal of Building Engineering, 31, 101465.

    Article  Google Scholar 

  • Muttashar, H. L., Ariffin, M. A. M., Hussein, M. N., Hussin, M. W., & Ishaq, S. B. (2018). Self-compacting geopolymer concrete with spend garnet as sand replacement. Journal of Building Engineering, 15, 85–94.

    Article  Google Scholar 

  • Naqi, A., Siddique, S., Kim, H. K., & Jang, J. G. (2020). Examining the potential of calcined oyster shell waste as additive in high volume slag cement. Construction and Building Materials, 230, 116973.

    Article  CAS  Google Scholar 

  • Nath, P., & Sarker, P. K. (2015). Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cement and Concrete Composites, 55, 205–214.

    Article  CAS  Google Scholar 

  • Nemaleu, J. G. D., Djaoyang, V. B., Bilkissou, A., Kaze, C. R., Boum, R. B. E., Djobo, J. N. Y., et al. (2020). Investigation of groundnut shell powder on development of lightweight metakaolin based geopolymer composite: Mechanical and microstructural properties. Silicon. https://doi.org/10.1007/s12633-020-00829-z

  • Nuaklong, P., Sata, V., & Chindaprasirt, P. (2016). Influence of recycled aggregate on fly ash geopolymer concrete properties. Journal of Cleaner Production, 112, 2300–2307.

    Article  CAS  Google Scholar 

  • Okoye, F. N., Durgaprasad, J., & Singh, N. B. (2016). Effect of silica fume on the mechanical properties of fly ash based-geopolymer concrete. Ceramics International, 42(2), 3000–3006.

    Article  CAS  Google Scholar 

  • Park, Y., Abolmaali, A., Kim, Y. H., & Ghahremannejad, M. (2016). Compressive strength of fly ash-based geopolymer concrete with crumb rubber partially replacing sand. Construction and Building Materials, 118, 43–51.

    Article  CAS  Google Scholar 

  • Part, W. K., Ramli, M., & Cheah, C. B. (2015). An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products. Construction and Building Materials, 77, 370–395.

    Article  Google Scholar 

  • Pavithra, P. E., Reddy, M. S., Dinakar, P., Rao, B. H., Satpathy, B. K., & Mohanty, A. N. (2016). A mix design procedure for geopolymer concrete with fly ash. Journal of Cleaner Production, 133, 117–125.

    Article  CAS  Google Scholar 

  • Pilehvar, S., Cao, V. D., Szczotok, A. M., Valentini, L., Salvioni, D., & Magistri, M., et al. (2017). Mechanical properties and microscale changes of geopolymer concrete and Portland cement concrete containing micro-encapsulated phase change materials. Cement and Concrete Research, 100, 341–349.

    Article  CAS  Google Scholar 

  • Prusty, J. K., & Pradhan, B. (2020). Multi-response optimization using Taguchi-Grey relational analysis for composition of fly ash-ground granulated blast furnace slag based geopolymer concrete. Construction and Building Materials, 241, 118049.

    Article  CAS  Google Scholar 

  • Reddy, B. M., Reddy, R. M., Reddy, B. C. M., Reddy, P. V., Rao, H. R., & Reddy, Y. M. (2020). The effect of granite powder on mechanical, structural and water absorption characteristics of alkali treated cordia dichotoma fiber reinforced polyester composite. Polymer Testing, 91, 106782.

    Article  CAS  Google Scholar 

  • Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. (2013). The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and Building Materials, 47, 409–418.

    Article  Google Scholar 

  • Sadek, D. M., El-Attar, M. M., & Ali, H. A. (2016). Reusing of marble and granite powders in self-compacting concrete for sustainable development. Journal of Cleaner Production, 121, 19–32.

    Article  Google Scholar 

  • Salas, D. A., Ramirez, A. D., Ulloa, N., Baykara, H., & Boero, A. J. (2018). Life cycle assessment of geopolymer concrete. Construction and Building Materials, 190, 170–177.

    Article  CAS  Google Scholar 

  • Savadkoohi, M. S., & Reisi, M. (2020). Environmental protection based sustainable development by utilization of granite waste in Reactive Powder Concrete. Journal of Cleaner Production, 266, 121973.

  • Saxena, R., Gupta, T., Sharma, R. K., Chaudhary, S., & Jain, A. (2020). Assessment of mechanical and durability properties of concrete containing PET waste. Scientia Iranica, 27(1), 1–9.

    Google Scholar 

  • Saxena, R., Siddique, S., Gupta, T., Sharma, R. K., & Chaudhary, S. (2018). Impact resistance and energy absorption capacity of concrete containing plastic waste. Construction and Building Materials, 176, 415–421.

    Article  CAS  Google Scholar 

  • Singh, S., Nagar, R., & Agrawal, V. (2016a). Performance of granite cutting waste concrete under adverse exposure conditions. Journal of Cleaner Production, 127, 172–182.

    Article  CAS  Google Scholar 

  • Singh, S., Nagar, R., & Agrawal, V. (2016b). Feasibility as a potential substitute for natural sand: a comparative study between granite cutting waste and marble slurry. Procedia Environmental Sciences, 35, 571–582.

    Article  CAS  Google Scholar 

  • Singh, S., Nagar, R., Agrawal, V., Rana, A., & Tiwari, A. (2016c). Sustainable utilization of granite cutting waste in high strength concrete. Journal of Cleaner Production, 116, 223–235.

    Article  Google Scholar 

  • Singhal, D., Junaid, M. T., Jindal, B. B., & Mehta, A. (2018). Mechanical and microstructural properties of fly ash based geopolymer concrete incorporating alccofine at ambient curing. Construction and Building Materials, 180, 298–307.

    Article  Google Scholar 

  • Taji, I., Ghorbani, S., De Brito, J., Tam, V. W., Sharifi, S., Davoodi, A., & Tavakkolizadeh, M. (2019). Application of statistical analysis to evaluate the corrosion resistance of steel rebars embedded in concrete with marble and granite waste dust. Journal of Cleaner Production, 210, 837–846.

    Article  CAS  Google Scholar 

  • Teh, S. H., Wiedmann, T., Castel, A., & de Burgh, J. (2017). Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. Journal of Cleaner Production, 152, 312–320.

    Article  CAS  Google Scholar 

  • Thomas, F. K., & Partheeban, P. (2010). Study on the effect of granite powder on concrete properties. Proceedings of the Institution of Civil Engineers-Construction Materials, 163(2), 63–70.

    Article  CAS  Google Scholar 

  • Torres, P., Fernandes, H. R., Agathopoulos, S., Tulyaganov, D. U., & Ferreira, J. M. F. (2004). Incorporation of granite cutting sludge in industrial porcelain tile formulations. Journal of the European Ceramic Society, 24(10–11), 3177–3185.

    Article  CAS  Google Scholar 

  • Upadhyaya, S., Nanda, B., & Panigrahi, R. (2020). Effect of granite dust as partial replacement to natural sand on strength and ductility of reinforced concrete beams. Journal of the Institution of Engineers (India): Series A, 101(4), 669–677.

  • Vijayalakshmi, M., & Sekar, A. S. S. (2013). Strength and durability properties of concrete made with granite industry waste. Construction and Building Materials, 46, 1–7.

    Article  Google Scholar 

  • Xie, J., Chen, W., Wang, J., Fang, C., Zhang, B., & Liu, F. (2019). Coupling effects of recycled aggregate and GGBS/metakaolin on physicochemical properties of geopolymer concrete. Construction and Building Materials, 226, 345–359.

    Article  CAS  Google Scholar 

  • Xie, T., & Ozbakkaloglu, T. (2015). Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceramics International, 41(4), 5945–5958.

    Article  CAS  Google Scholar 

  • Zafar, M. S., Javed, U., Khushnood, R. A., Nawaz, A., & Zafar, T. (2020). Sustainable incorporation of waste granite dust as partial replacement of sand in autoclave aerated concrete. Construction and Building Materials, 250, 118878.

    Article  CAS  Google Scholar 

  • Zhao, R., Yuan, Y., Cheng, Z., Wen, T., Li, J., Li, F., & Ma, Z. J. (2019). Freeze-thaw resistance of class F fly ash-based geopolymer concrete. Construction and Building Materials, 222, 474–483.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trilok Gupta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, R., Gupta, T., Sharma, R.K. et al. Influence of granite waste on mechanical and durability properties of fly ash-based geopolymer concrete. Environ Dev Sustain 23, 17810–17834 (2021). https://doi.org/10.1007/s10668-021-01414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01414-z

Keywords

Navigation