Skip to main content
Log in

A mixed spectral treatment for the stochastic models with random parameters

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a mixed spectral technique is suggested for the analysis of stochastic models with parameters having random variations. The proposed mixed technique considers a Volterra-like expansions for all types of randomness. Particularly, the generalized polynomial chaos (gPC) expansion is used for the random parameters and the Wiener–Hermite functionals (WHF) technique is used for the noise. The statistical properties of the functionals enables to derive a deterministic system used to evaluate the solution statistical moments. The new mixed technique is shown to be efficient compared with the classical techniques and analytical solutions could be obtained in many cases. The suggested technique allows to separate the contributions of the different random sources and hence enables to evaluate variance components which are used to estimate the sensitivity indices. The technique is applied successfully to different models with additive and multiplicative noise and compared with the classical sampling techniques. The stochastic nuclear reactor model with random parameters is analyzed with the new technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sapsis T, Lermusiaux P (2009) Dynamically orthogonal fields equations for continuous stochastic dynamical systems. Physica D 238:2347–2360

    Article  MathSciNet  Google Scholar 

  2. Lototsky, S, Rozovsky, B (2006) Stochastic differential equations: a Wiener chaos approach. Book chapter in The Shiryaev Festschrift, From Stochastic Calculus to Mathematical Finance. Springer, Berlin, pp 433–507

  3. Holden H, Øksendal B, Ubøe J, Zhang T (2010) Stochastic Partial Differential Equations - A Modeling. Springer-Verlag, New York, White Noise Functional Approach

    Book  Google Scholar 

  4. Cortés J-C, El-Labany S, Navarro-Quiles A, Selim M, Slama H (2020) A comprehensive probabilistic analysis of approximate SIR-type epidemiological models via full randomized discrete-time Markov chain formulation with applications. Math Methods Appl Sci 43(14):8204–8222

    Article  MathSciNet  Google Scholar 

  5. Ding C, Deokar R, Cui X, Li G, Cai Y, Tamma K (2019) Proper orthogonal decomposition and Monte Carlo based isogeometric stochastic method for material, geometric and force multi-dimensional uncertainties. Comput Mech 63(3):521–533

    Article  MathSciNet  Google Scholar 

  6. Nagy S, El-Beltagy M, Wafa M (2020) Multilevel Monte Carlo by using the Halton sequence. Monte Carlo Methods Appl 26(3):193–203

    Article  MathSciNet  Google Scholar 

  7. Sapsis T, Majda A (2013) Blended reduced subspace algorithms for uncertainty quantification of quadratic systems with a stable mean state. Physica D 258:61–76

    Article  MathSciNet  Google Scholar 

  8. Behringer K, Pineyro J, Mennig J (1990) Application of the Wiener--Hermite functional method to point reactor kinetics driven by random reactivity fluctuations. Ann Nucl Energy 17(12):643–656

    Article  Google Scholar 

  9. El-Beltagy M (2019) A practical comparison between the spectral techniques in solving the SDEs. Eng Comput 36(7):2369–2402

    Google Scholar 

  10. Noor A, Barnawi A, Nour R, Assiri A, El-Beltagy M (2020) Analysis of the stochastic population model with random parameters. Entropy 22(5):562

    Article  MathSciNet  Google Scholar 

  11. AbdelFattah H, Al-Johani A, El-Beltagy M (2020) Analysis of the stochastic quarter-five spot problem using polynomial chaos. Molecules 25(15):3370

    Article  Google Scholar 

  12. Luo W (2006) Wiener chaos expansion and numerical solutions of stochastic partial differential equations. PhD thesis, California Institute of Technology, Pasadena, California

  13. Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Springer, New York

    Book  Google Scholar 

  14. Xiu D, Karniadakis G (2003) Modeling uncertainty of elliptic partial differential equations via generalized polynomial chaos. J Comput Phys 187(1):137–167

    Article  MathSciNet  Google Scholar 

  15. Iooss B, Saltelli A (2017) Introduction to sensitivity analysis. In: Higdon D, Owhadi H (eds) Ghanem R. Handbook of Uncertainty Quantification. Springer, Cham

  16. Cheng M, Hou T, Zhang Z (2013) A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations. J Comput Phys 242:753–776

    Article  MathSciNet  Google Scholar 

  17. Choi M, Sapsis T, Karniadakis G (2014) On the equivalence of dynamically orthogonal and bi-orthogonal methods theory and numerical simulations. J Comput Phys 270:1–20

    Article  MathSciNet  Google Scholar 

  18. Babaee H, Choi M, Sapsis T, Karniadakis G (2017) A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems. J Comput Phys 344:303–319

    Article  MathSciNet  Google Scholar 

  19. Feppon F, Lermusiaux P (2018a) A geometric approach to dynamical model-order reduction. SIAM J Matrix Anal Appl 39:510–538

    Article  MathSciNet  Google Scholar 

  20. Feppon F, Lermusiaux P (2018b) Dynamically orthogonal numerical schemes for efficient stochastic advection and Lagrangian transport. SIAM Rev 60(3):595–625

    Article  MathSciNet  Google Scholar 

  21. Doi M, Imamura T (1979) An exact Gaussian solution for two-dimensional incompressible inviscid turbulent flow. J Phys Soc Jpn 46(4):1358–1359

    Article  Google Scholar 

  22. Meecham W (1999) Scaleless algebraic energy spectra for the incompressible Navier-Stokes equation; relation to other nonlinear problems. J Mar Syst 21(1–4):113–130

    Article  Google Scholar 

  23. El-Beltagy M, El-Tawil M (2013) Toward a solution of a class of non-linear stochastic perturbed PDEs using automated WHEP algorithm. Appl Math Model 37(12–13):7174–7192

    Article  MathSciNet  Google Scholar 

  24. El-Beltagy M, Al-Mulla N (2014) Solution of the stochastic heat equation with nonlinear losses using Wiener--Hermite expansion. J Appl Math. Article ID 843714

  25. Alaskary S, El-Beltagy M (2020) Uncertainty quantification spectral technique for the stochastic point reactor with random parameters. Energies 13(6):1297

    Article  Google Scholar 

  26. Arnold L (1992) Stochastic Differential Equations: Theory and Applications. Krieger Pub Co, Malabar

    Google Scholar 

  27. Bachar, M, Batzel, J, Ditlevsen, S (Ed) (2013) Stochastic biomathematical models with applications to neuronal modeling. Lecture Notes in Mathematics. Springer, Berlin

  28. Prieur C, Tarantola S (2017) Variance-based sensitivity analysis theory and estimation algorithms. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of Uncertainty Quantification. Springer, Cham

    Google Scholar 

  29. Sargsyan K (2015) Surrogate models for uncertainty propagation and sensitivity analysis. In: Ghanem R, Higdon D, Owhadi H (eds) Handbook of uncertainty quantification. Springer, Cham

    Google Scholar 

  30. Hayes J, Allen E (2005) Stochastic point kinetics equations in nuclear reactor dynamics. Annal Nucl Energy 32:572–587

  31. Ray S (2012) Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor. Annal Nucl Energy 49:154–159

  32. Nahla A, Edress A (2016) Efficient stochastic model for the point kinetics equations. Stoch Anal Appl 34:598–609

  33. Suescún-Díaz D, Oviedo-Torres Y, Girón-Cruz L (2018) Solution of the stochastic point kinetics equations using the implicit Euler-Maruyama method. Ann Nucl Energy 117:45–52

  34. Ayyoubzadeh S, Vosoughi N (2014) An alternative stochastic formulation for the point reactor. Ann Nucl Energy 63:691–695

  35. Le Maître O, Knio O (2015) PC analysis of stochastic differential equations driven by Wiener noise. Reliab Eng Syst Saf 135:107–124

    Article  Google Scholar 

  36. Le Maître O, Knio O (2010) Spectral methods for uncertainty quantification, with applications to computational fluid dynamics. Springer, Netherlands

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. El-Beltagy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Beltagy, M.A., Al-Juhani, A. A mixed spectral treatment for the stochastic models with random parameters. J Eng Math 132, 1 (2022). https://doi.org/10.1007/s10665-021-10179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10179-3

Keywords

Navigation