Skip to main content
Log in

Developed mathematical technique for fractional stochastic point kinetics model in nuclear reactor dynamics

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Fractional stochastic kinetics equations have proven to be valuable tools for the point reactor kinetics model, where the nuclear reactions are not fully described by deterministic relations. A fractional stochastic model for the point kinetics system with multi-group of precursors, including the effect of temperature feedback, has been developed and analyzed. A major mathematical and inflexible scheme to the point kinetics model is obtained by merging the fractional and stochastic technique. A novel split-step method including mathematical tools of the Laplace transforms, Mittage–Leffler function, eigenvalues of the coefficient matrix, and its corresponding eigenvectors have been used for the fractional stochastic matrix differential equation. The validity of the proposed technique has been demonstrated via calculations of the mean and standard deviation of neutrons and precursor populations for various reactivities: step, ramp, sinusoidal, and temperature reactivity feedback. The results of the proposed method agree well with the conventional one of the deterministic point kinetics equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J.G. Hayes, E.J. Allen, Stochastic point kinetics equations in nuclear reactor dynamics. Ann. Nucl. Energy 32, 572–587 (2005). https://doi.org/10.1016/j.anucene.2004.11.009

    Article  Google Scholar 

  2. J.G. Hayes, Development of stochastic point kinetics equations in nuclear reactor dynamics, thesis, Texas Tech University (2005). https://ttu-ir.tdl.org/ttu-ir/bitstream/handle/2346/22276/HayesThesis.pdf

  3. P.N. Ha, J.K. Kim, A stochastic approach to monoenergetic space-time nuclear reactor kinetics. J. Nucl. Sci. Technol. 47, 705–711 (2010). https://doi.org/10.1080/18811248.2010.9711646

    Article  Google Scholar 

  4. P.N. Ha, J.K. Kim, Further evaluation of a stochastic model applied to monoenergetic space-time nuclear reactor kinetics. Nucl. Eng. Technol. 43, 523–530 (2011). https://doi.org/10.5516/NET.2011.43.6.523

    Article  Google Scholar 

  5. S.S. Ray, Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor. Ann. Nucl. Energy 49, 154–159 (2012). https://doi.org/10.1016/j.anucene.2012.05.022

    Article  Google Scholar 

  6. S.S. Ray, A. Patra, Numerical solution for stochastic point kinetics equations with sinusoidal reactivity in dynamical system of nuclear reactor. Int. J. Nucl. Energy Sci. Technol. 7, 231–242 (2013). https://doi.org/10.1504/IJNEST.2013.052165

    Article  Google Scholar 

  7. E.J. Allen, Stochastic difference equations and a stochastic partial differential equation for neutron transport. J. Differ. Equ. Appl. 18, 1267–1285 (2012). https://doi.org/10.1080/10236198.2010.488229

    Article  MathSciNet  MATH  Google Scholar 

  8. E.J. Allen, A stochastic analysis of power doubling time for a subcritical system. Stoch. Anal. Appl. 31, 528–537 (2013). https://doi.org/10.1080/07362994.2013.777287

    Article  MathSciNet  MATH  Google Scholar 

  9. S.S. Ray, A. Patra, Numerical solution of fractional stochastic neutron point kinetic equation for nuclear reactor dynamics. Ann. Nucl. Energy 54, 154–161 (2013). https://doi.org/10.1016/j.anucene.2012.11.007

    Article  Google Scholar 

  10. S.M. Ayyoubzadeh, N. Vosoughi, An alternative stochastic formulation for the point kinetics. Ann. Nucl. Energy 63, 691–695 (2014). https://doi.org/10.1016/j.anucene.2013.09.013

    Article  Google Scholar 

  11. A.A. Nahla, A.M. Edress, Analytical exponential model for stochastic point kinetics equations via eigenvalues and eigenvectors. Nucl. Sci. Technol. 27(20), 1–8 (2016). https://doi.org/10.1007/s41365-016-0025-6

    Google Scholar 

  12. A.A. Nahla, A.M. Edress, Efficient stochastic model for the point kinetics equations. Stoch. Anal. Appl. 34, 598–609 (2016). https://doi.org/10.1080/07362994.2016.1159519

    Article  MathSciNet  MATH  Google Scholar 

  13. M.W. da Silva, R. Vasques, B.E.G. Bodmann et al., A nonstiff solution for the stochastic neutron point kinetics equations. Ann. Nucl. Energy 97, 47–52 (2016). https://doi.org/10.1016/j.anucene.2016.06.026

    Article  Google Scholar 

  14. A.A. Nahla, Stochastic model for the nonlinear point reactor kinetics equations in the presence Newtonian temperature feedback effects. J. Differ. Equ. Appl. 23, 1003–1016 (2017). https://doi.org/10.1080/10236198.2017.1308507

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Singh, S.S. Ray, On the comparison of two split-step methods for the numerical simulation of stochastic point kinetics equations in presence of Newtonian temperature feedback effects. Ann. Nucl. Energy 110, 865–873 (2017). https://doi.org/10.1016/j.anucene.2017.08.001

    Article  Google Scholar 

  16. E.J. Allen, Modeling with Itô Stochastic Differential Equations (Springer, Dordrecht, 2007)

    MATH  Google Scholar 

  17. D.J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Rev. 43, 525–546 (2001). https://doi.org/10.1137/S0036144500378302

    Article  MathSciNet  MATH  Google Scholar 

  18. M.A. Akinlar, A. Secer, M. Bayram, Numerical solution of fractional Benney equation. Appl. Math. 8, 1633–1637 (2014). https://doi.org/10.12785/amis/080418

    MathSciNet  Google Scholar 

  19. M. Caputo, Elasticità Dissipazione (Zanichelli, Bologna, 1969)

    Google Scholar 

  20. I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  21. S.S. Ray, Fractional Calculus with Applications for Nuclear Reactor Dynamics (CRC Press, Taylor and Francis group, Boca Raton, New York, 2016)

    MATH  Google Scholar 

  22. M.M.R. Williams, Random Processes in Nuclear Reactors (Pergamon Press, Oxford, 1974)

    Google Scholar 

  23. S. Kazem, Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlin. Sci. 16, 3–11 (2013)

    MathSciNet  Google Scholar 

  24. A.A. Nahla, Analytical solution of the fractional point kinetics equations with multigroup of delayed neutrons during start-up of a nuclear reactor. Ann. Nucl. Energy 99, 247–252 (2017). https://doi.org/10.1016/j.anucene.2016.08.030

    Article  Google Scholar 

  25. A.A. Nahla, A. Hemeda, Picard iteration and Padé approximations for stiff fractional point kinetics equations. Appl. Math. Comput. 293, 72–80 (2017). https://doi.org/10.1016/j.amc.2016.08.008

    MathSciNet  Google Scholar 

  26. A.E. Aboanber, Stiffness treatment of differential equations for the point reactor dynamic systems. Prog. Nucl. Energy 71, 248–257 (2014). https://doi.org/10.1016/j.pnucene.2013.12.004

    Article  Google Scholar 

  27. A.A. Nahla, Analytical solution to solve the point reactor kinetics equations. Nucl. Eng. Des. 240, 1622–1629 (2010). https://doi.org/10.1016/j.nucengdes.2010.03.003

    Article  Google Scholar 

  28. J.A.M. Nobrega, A new solution of the point kinetics equations. Nucl. Sci. Eng. 46, 366–375 (1971)

    Article  Google Scholar 

  29. A.E. Aboanber, A.A. Nahla, Generalization of the analytical inversion method for the solution of the point kinetics equations. J. Phys. A Math. Gen. 35, 3245–3263 (2002). https://doi.org/10.1088/0305-4470/35/14/307

    Article  MathSciNet  MATH  Google Scholar 

  30. A.E. Aboanber, A.A. Nahla, Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Padé approximations via the analytical inversion method. J. Phys. A Math. Gen. 35, 9609–9627 (2002). https://doi.org/10.1088/0305-4470/35/45/309

    Article  MATH  Google Scholar 

  31. A.A. Nahla, Generalization of the analytical exponential model to solve the point kinetics equations of Be- and \(D_{2}O\)-moderated reactors. Nucl. Eng. Des. 238, 2648–2653 (2008). https://doi.org/10.1016/j.nucengdes.2008.04.002

    Article  Google Scholar 

  32. A.A. Nahla, An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects. Ann. Nucl. Energy 38, 2810–2817 (2011). https://doi.org/10.1016/j.anucene.2011.08.021

    Article  Google Scholar 

  33. A.A. Nahla, Numerical treatment for the point reactor kinetics equations using theta method, eigenvalues and eigenvectors. Prog. Nucl. Energy 85, 756–763 (2015). https://doi.org/10.1016/j.pnucene.2015.09.008

    Article  Google Scholar 

  34. A. Patra, S.S. Ray, On the solution of the nonlinear fractional neutron point-kinetics equation with Newtonian temperature feedback reactivity. Nucl. Technol. 189(1), 103–109 (2015). https://doi.org/10.13182/NT13-148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah A. Nahla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboanber, A.E., Nahla, A.A. & Edress, A.M. Developed mathematical technique for fractional stochastic point kinetics model in nuclear reactor dynamics. NUCL SCI TECH 29, 132 (2018). https://doi.org/10.1007/s41365-018-0467-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-018-0467-0

Keywords

Navigation