Skip to main content

Advertisement

Log in

An overview of the application of electrocoagulation for mine wastewater treatment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

One of the challenges of the twenty-first century is related to the discharge and disposal of mine effluents and wastewater resulting from mine dewatering, precipitation, and surface runoff in mines, especially acidic effluents that contain a variety of toxic and heavy metals and are the main sources of surface and groundwater pollution. Various physical, chemical, and biological methods have been developed and used to treat mine effluents. All proposed methods have their own disadvantages that make their use challenging. One of the new methods used for wastewater treatment is the electrical coagulation process, which has attracted the attention of researchers in recent years due to its advantages such as simplicity, environmental friendliness, and low cost. The present review focused on the applications of electrocoagulation for mine wastewater treatment as well as metals recovery. In addition, the main mechanisms, advantages, and weaknesses of electrocoagulation were reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data used during the study appear in the submitted manuscript.

References

  • Abdul-wahab, S. A., & Marikar, F. A. (2012). The environmental impact of gold mines: Pollution by heavy metals. Central European Journal of Engineering, Research article, 2(2), 304–313. https://doi.org/10.2478/s13531-011-0052-3

    Article  CAS  Google Scholar 

  • Acheampong, M. A., Paksirajan, K., & Lens, P. N. L. (2013a). Assessment of the effluent quality from a gold mining industry in Ghana. Environmental Science and Pollution Research, 20(6), 3799–3811.

    Article  CAS  Google Scholar 

  • Acheampong, M. A., Adiyiah, J., & Ansa, E. D. O. (2013b). Physico-chemical characteristics of a gold mining tailings dam wastewater. Journal of Environmental Science and Engineering A, 2(8A), 469.

    Google Scholar 

  • Acheampong, M. A., & Ansa, E. D. O. (2017). Low-cost technologies for mining wastewater treatment. Journal of Environmental Science and Engineering B, 6, 391–405.

    CAS  Google Scholar 

  • Aguayo, S., Valenzuela, J. L., Parga, J. R., Lewis, R. G., & Cruz, M. (2007). Continuous laboratory gold solvent extraction from cyanide solutions using LIX 79 reagent. Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 30(11), 1532–1536.

    Article  CAS  Google Scholar 

  • Ajiboye, T. O., Oyewo, O. A., & Onwudiwe, D. C. (2021). Simultaneous removal of organics and heavy metals from industrial wastewater: A review. Chemosphere, 262, 128379.

    Article  CAS  Google Scholar 

  • Al-Anbari, R. H., Albaidani, J., Alfatlawi, S. M., & Al-Hamdani, T. A. (2008). Removal of heavy metals from industrial water using electro-coagulation technique. Twelfth International Water Technology Conference.

  • Al-Raad, A. A., & Hanafiah, M. M. (2021a). Sulfate (SO42−) removal by electrocoagulation process under combined electrical connection of electrodes. IOP Conference Series: Earth and Environmental Science, 880(1), 12033.

    Google Scholar 

  • Al-Raad, A. A., & Hanafiah, M. M. (2021b). Removal of inorganic pollutants using electrocoagulation technology: A review of emerging applications and mechanisms. Journal of Environmental Management, 300, 113696.

    Article  CAS  Google Scholar 

  • Altunay, S., Kilic, I. H., Oden, M. K., & Cakmak, B. (2020). Heavy metal removal from ore processing plant wastewater by electrocoagulation process. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 10, 56–62.

    Google Scholar 

  • Altunay, S., Kiliç, İ. H., Öden, M. K., & Çakmak, B. (2021). Pollutant removal from mining processing wastewater by electrochemical method. Global NEST Journal, 23(2), 178–185.

    CAS  Google Scholar 

  • Asrifah, R. D. (2020). TSS, Cu, and Hg removal with electrocoagulation method for gold mine wastewater. AIP Conference Proceedings, 2245, 030012. https://doi.org/10.1063/5.0010499

  • Asrifah, R. D., Anasstasia, T. T., Aurilia, M. F., Utama, V. F., Wulandari, D., Widhiananto, P. A., & Wibowo, B. Y. (2020). The effect of flow rate discharge on TDS, pH, TSS, and Cu in electrocoagulation with continuous reactors. Proceeding of LPPM UPN “Veteran” Yogyakarta Conference Series 2020–Engineering and Science Series, 1(1), 737–746.

  • Asrifah, R. R. D., Anasstasia, T. T., & Aurilia, M. F. (2021). Effect of time and voltage on pollutant remover in gold treatment wastewater with electrocoagulation batch reactor. Elkawnie: Journal of Islamic Science and Technology, 7(1).

  • Azhar, M., Hamid, A., Aziz, H. A., Su, M., & Rezan, S. A. (2020). Optimization and analysis of zeolite augmented electrocoagulation process in the reduction of high-strength ammonia in saline landfill leachate. Water, 12, 247. https://doi.org/10.3390/w12010247

    Article  CAS  Google Scholar 

  • Bajpai, M., Katoch, S. S., Kadier, A., & Singh, A. (2022). A review on electrocoagulation process for the removal of emerging contaminants: Theory, fundamentals, and applications. Environmental Science and Pollution Research, 1–30.

  • Bakatula, E. N., Cukrowska, E. M., Chimuka, L., & Tutu, H. (2012). Characterization of cyanide in a natural stream impacted by gold mining activities in the Witwatersrand Basin. South Africa. Toxicological & Environmental Chemistry, 94(1), 7–19.

    Article  CAS  Google Scholar 

  • Bakshi, A., Verma, A. K., & Dash, A. K. (2020). Electrocoagulation for removal of phosphate from aqueous solution: Statistical modeling and techno-economic study. Journal of Cleaner Production, 246, 118988.

    Article  CAS  Google Scholar 

  • Bayramoglu, M., Eyvaz, M., & Kobya, M. (2007). Treatment of the textile wastewater by electrocoagulation: Economical evaluation. Chemical Engineering Journal, 128(2–3), 155–161.

    Article  CAS  Google Scholar 

  • Benassi, J. C., Laus, R., Geremias, R., Lima, P. L., Menezes, C. T. B., Laranjeira, M. C. M., Wilhelm-Filho, D., Favere, V. T., & Pedrosa, R. C. (2006). Evaluation of remediation of coal mining wastewater by chitosan microspheres using biomarkers. Archives of Environmental Contamination and Toxicology, 51(4), 633–640.

    Article  CAS  Google Scholar 

  • Benavente, M., Moreno, L., & Martinez, J. (2011). Sorption of heavy metals from gold mining wastewater using chitosan. Journal of the Taiwan Institute of Chemical Engineers, 42(6), 976–988.

    Article  CAS  Google Scholar 

  • Bhattacharya, A. K., Mandal, S. N., & Das, S. K. (2006). Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chemical Engineering Journal, 123(1–2), 43–51.

    Article  CAS  Google Scholar 

  • Boncukcuoğlu, R., Kocakerim, M. M., Kocadağistan, E., & Yilmaz, M. T. (2003). Recovery of boron of the sieve reject in the production of borax. Resources, Conservation and Recycling, 37(2), 147–157.

    Article  Google Scholar 

  • Bow, R., Arita, S., Ibrahim, E., & Ngudiantoro, N. (2013). Reduction of metal contents in coal stockpile wastewater using electrocoagulation. Applied Mechanics and Materials, 391, 29–33.

    Article  Google Scholar 

  • Bow, Y., & Taqwa, A. (2014). Treatment of coal stockpile wastewater by electrocoagulation using aluminum electrodes. Advanced Materials Research, 896, 145–148.

    Article  Google Scholar 

  • Brahmi, K., Bouguerra, W., Belhsan, H., Elaloui, E., Loungou, M., Tlili, Z., & Hamrouni, B. (2016). Use of electrocoagulation with aluminum electrodes to reduce hardness in tunisian phosphate mining process water. Mine Water and the Environment, 35(3), 310–317.

    Article  CAS  Google Scholar 

  • Brown, E. (2003). Water for a sustainable minerals industry − A review. In Proceedings of Water in Mining 2003. AIMM, Brisbane.

  • Carreño, G., Cárdenas, B. G., Puy y Alquiza, M. J., Avilés, R. M., Jacobo Azuara, A., & Moncada Sánchez, C. D. (2018). Sulfate ions removal contained in water from abandoned mines using an electrocoagulation process without recirculation. ECS Meeting Abstracts. https://doi.org/10.1149/ma2018-02/27/925

  • Chai, Y., Qin, P., Zhang, J., Li, T., Dai, Z., & Wu, Z. (2020). Simultaneous removal of Fe (II) and Mn (II) from acid mine wastewater by electro-Fenton process. Process Safety and Environmental Protection, 143, 76–90.

    Article  CAS  Google Scholar 

  • Changmai, M., Pasawan, M., & Purkait, M. K. (2019). Treatment of oily wastewater from drilling site using electrocoagulation followed by microfiltration. Separation and Purification Technology, 210, 463–472. https://doi.org/10.1016/j.seppur.2018.08.007

  • Cheballah, K., Sahmoune, A., Messaoudi, K., Drouiche, N., & Lounici, H. (2015). Simultaneous removal of hexavalent chromium and COD from industrial wastewater by bipolar electrocoagulation. Chemical Engineering and Processing: Process Intensification, 96, 94–99.

    Article  CAS  Google Scholar 

  • Chegeni, M. K., Shahedi, A., Darban, A. K., Jamshidi-Zanjani, A., & Homaee, M. (2021). Simultaneous removal of lead and cyanide from the synthetic solution and effluents of gold processing plants using electrochemical method. Journal of Water Process Engineering, 43, 102284.

  • Chen, M., Dollar, O., Shafer-Peltier, K., Randtke, S., Waseem, S., & Peltier, E. (2020). Boron removal by electrocoagulation: Removal mechanism, adsorption models and factors influencing removal. Water Research, 170, 115362. https://doi.org/10.1016/j.watres.2019.115362

  • Chen, X., Ren, P., Li, T., Trembly, J. P., & Liu, X. (2018). Zinc removal from model wastewater by electrocoagulation: Processing, kinetics and mechanism. Chemical Engineering Journal, 349, 358–367. https://doi.org/10.1016/j.cej.2018.05.099

    Article  CAS  Google Scholar 

  • Choi, A. E. S., Futalan, C. C. M., & Yee, J.-J. (2020). Fuzzy optimization for the removal of uranium from mine water using batch electrocoagulation: A case study. Nuclear Engineering and Technology, 52(7), 1471–1480.

    Article  CAS  Google Scholar 

  • Crini, G., & Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145–155.

    Article  CAS  Google Scholar 

  • da Silva Ribeiro, T., Grossi, C. D., Merma, A. G., dos Santos, B. F., & Torem, M. L. (2019). Removal of boron from mining wastewaters by electrocoagulation method: modelling experimental data using artificial neural networks. Minerals Engineering, 131, 8–13.

    Article  Google Scholar 

  • Damaraju, M., Yoshihara, H., Bhattacharyya, D., Panda, T. K., & Kurilla, K. K. (2019). Phosphorus recovery from the sludge generated from a continuous bipolar mode electrocoagulation (CBME) system. Water Science and Technology, 79(7), 1348–1356. https://doi.org/10.2166/wst.2019.131

    Article  CAS  Google Scholar 

  • Darban, A. K., Shahedi, A., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry. https://doi.org/10.1016/j.coelec.2020.05.009

    Article  Google Scholar 

  • Das, D., & Nandi, B. K. (2021). Treatment of iron ore beneficiation plant process water by electrocoagulation. Arabian Journal of Chemistry, 14(1), 102902. https://doi.org/10.1016/j.arabjc.2020.11.008

  • Das, P. P., Anweshan, A., Mondal, P., Sinha, A., Biswas, P., Sarkar, S., & Purkait, M. K. (2021). Integrated ozonation assisted electrocoagulation process for the removal of cyanide from steel industry wastewater. Chemosphere, 263, 128370.

  • De, S., Hazra, T., & Dutta, A. (2019). Assessment of removal of mercury from landfill leachate by electrocoagulation. In Environmental biotechnology for soil and wastewater implications on ecosystems (pp. 21–27). https://doi.org/10.1007/978-981-13-6846-2_4

  • Del Ángel, P., Carreño, G., Nava, J. L., Martínez, M. T., & Ortiz, J. (2014). Removal of arsenic and sulfates from an abandoned mine drainage by electrocoagulation. Influence of hydrodynamic and current density. International Journal of Electrochemical Science, 9, 710–719.

    Google Scholar 

  • Demirbas, E., & Kobya, M. (2017). Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Safety and Environmental Protection, 105, 79–90.

    Article  CAS  Google Scholar 

  • Dermentzis, K, Marmanis, D., Christoforidis, A., Kokkinos, N., & Stergiopoulos, D. (2016). Recovery of metallic nickel from waste sludge produced by electrocoagulation of nickel bearing electroplating effluents. 4th International Conference on Sustainable Solid Waste Management, 23–25.

  • Dermentzis, K., Valsamidou, E., Lazaridou, A., & Kokkinos, N. C. (2011a). Nickel removal from wastewater by electrocoagulation with aluminum electrodes. Journal of Engineering Science and Technology Review, 4(2), 188–192.

    Article  CAS  Google Scholar 

  • Dermentzis, K., Christoforidis, A., & Valsamidou, E. (2011b). Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. International Journal of Environmental Sciences, 1(5), 697–710.

    CAS  Google Scholar 

  • Dharmappa, H. B., Sivakumar, M., & Singh, R. N. (1998). Wastewater characteristics, management and reuse in mining and mineral processing industries. Wastewater Recycl. Reuse Reclam, 1(10).

  • Ding, J., Wang, K., Wang, S., Zhao, Q., Wei, L., Huang, H., Yuan, Y., & Dionysiou, D. D. (2018). Electrochemical treatment of bio-treated landfill leachate: Influence of electrode arrangement, potential, and characteristics. Chemical Engineering Journal, 344, 34–41. https://doi.org/10.1016/j.cej.2018.03.043

    Article  CAS  Google Scholar 

  • Dires, T. T., & Saroha, A. K. (2022). Electrocoagulation: Operational parameters, sludge & economic analysis. International Journal of Environmental Analytical Chemistry, 1–16.

  • Ebba, M., Asaithambi, P., & Alemayehu, E. (2021). Investigation on operating parameters and cost using an electrocoagulation process for wastewater treatment. Applied Water Science, 11(11), 1–9.

    Article  Google Scholar 

  • Edition, F. (2011). Guidelines for drinking-water quality. WHO Chronicle, 38(4), 104–108.

    Google Scholar 

  • Eisler, R., & Wiemeyer, S. N. (2004). Cyanide hazards to plants and animals from gold mining and related water issues. In Reviews of Environmental Contamination and Toxicology, 21–54. Springer.

  • Elawwad, A., & Hamdy, A. (2021). Removal of cyanide from wastewater using electrocoagulation. Proceedings of the 6th World Congress on Civil, Structural, and Environmental Engineering (CSEE’21). https://doi.org/10.11159/iceptp21.lx.110

  • Figueroa, G., Valenzuela, J. L., Parga, J. R., Vazquez, V., & Valenzuela, A. (2015). Recovery of gold and silver and removal of copper, zinc and lead ions in pregnant and barren cyanide solutions. Materials Sciences and Applications, 6(02), 171.

    Article  CAS  Google Scholar 

  • Fleming, C. A. (1992). Hydrometallurgy of precious metals recovery. Hydrometallurgy, 30(1–3), 127–162.

    Article  CAS  Google Scholar 

  • Fomchenko, N., & Muravyov, M. (2020). Sequential bioleaching of pyritic tailings and ferric leaching of nonferrous slags as a method for metal recovery from mining and metallurgical wastes. Minerals, 10(12), 1097.

    Article  CAS  Google Scholar 

  • Foudhaili, T., Jaidi, R., Neculita, C. M., Rosa, E., Triffault-Bouchet, G., Veilleux, É., Coudert, L., & Lefebvre, O. (2020). Effect of the electrocoagulation process on the toxicity of gold mine effluents: A comparative assessment of Daphnia magna and Daphnia pulex. Science of the Total Environment, 708, 134739.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters : A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

    Article  CAS  Google Scholar 

  • Gafiullina, A., Mamelkina, M., Vehmaanperä, P., Kinnarinen, T., & Häkkinen, A. (2020). Pressure filtration properties of sludge generated in the electrochemical treatment of mining waters. Water Research, 181, 115922.

  • Gálvez, E. D., Cruz, R., Robles, P. A., & Cisternas, L. A. (2014). Optimization of dewatering systems for mineral processing. Minerals Engineering, 63, 110–117.

    Article  Google Scholar 

  • Ganji, S., & Hayati, M. (2018). Selecting an appropriate method to remove cyanide from the wastewater of Moteh gold mine using a mathematical approach. Environmental Science and Pollution Research, 25. https://doi.org/10.1007/s11356-018-2424-1

  • Gao, P., Chen, X., Shen, F., & Chen, G. (2005). Removal of chromium (VI) from wastewater by combined electrocoagulation–electroflotation without a filter. Separation and Purification Technology, 43(2), 117–123.

    Article  CAS  Google Scholar 

  • Gao, X., Li, P., Wang, X., Guo, Y., Liao, P., Liu, Z., & Fan, H. (2018). Comparison of treatment efficiency of uranium (VI) containing wastewater using flocculation and electrocoagulation processes. Huanjing Gongcheng Xuebao/Chinese Journal of Environmental Engineering, 12, 488–496.

    Google Scholar 

  • García-Carrillo, C., Parga-Torres, J., Moreno-Casillas, H., & Sellschopp-Sanchez, F. S. (2019). Kinetics and energy consumption for a three-stage electrocoagulation process for the recovery of Au and Ag from cyanide leachates. Metals, 9(7). https://doi.org/10.3390/met9070758

  • Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267–299. https://doi.org/10.1016/j.jelechem.2017.07.047

    Article  CAS  Google Scholar 

  • Garner, R., Naidu, T., Saavedra, C., Matamoros, P., & Lacroix, E. (2012). Water management in mining: a selection of case studies. London: International Council on Mining & Metals.

    Google Scholar 

  • Ghanbari, F., Wu, J., Khatebasreh, M., Ding, D., & Lin, K.-Y. A. (2020). Efficient treatment for landfill leachate through sequential electrocoagulation, electrooxidation and PMS/UV/CuFe2O4 process. Separation and Purification Technology, 242, 116828. https://doi.org/10.1016/j.seppur.2020.116828

  • Gordon, R. B. (2002). Production residues in copper technological cycles. Resources, Conservation and Recycling, 36(2), 87–106. https://doi.org/10.1016/S0921-3449(02)00019-8

    Article  Google Scholar 

  • Gu, J., Liang, J., Chen, C., Li, K., Zhou, W., Jia, J., & Sun, T. (2020). Treatment of real deplating wastewater through an environmental friendly precipitation-electrodeposition-oxidation process: Recovery of silver and copper and reuse of wastewater. Separation and Purification Technology, 248, 117082.

    Article  CAS  Google Scholar 

  • Gunson, A. J. (2013). Quantifying, reducing and improving mine water use. University of British Columbia. Retrieved May 3, 2013, from https://open.library.ubc.ca/collections/ubctheses/24/items/1.0071942

  • Gunson, A. J., Klein, B., Veiga, M., & Keevil, N. B. (2010). Estimating global water withdrawals due to copper mining. In 2nd International Congress on Water Management in the Mining Industry (pp. 9–11).

  • Gunson, A. J., Klein, B., Veiga, M., & Dunbar, S. (2012). Reducing mine water requirements. Journal of Cleaner Production, 21(1), 71–82.

    Article  Google Scholar 

  • Hakizimana, J. N., Gourich, B., Chafi, M., Stiriba, Y., Vial, C., Drogui, P., & Naja, J. (2017). Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination, 404, 1–21.

    Article  CAS  Google Scholar 

  • Hanay, Ö., & Hasar, H. (2011). Effect of anions on removing Cu2+, Mn2+ and Zn2+ in electrocoagulation process using aluminum electrodes. Journal of Hazardous Materials, 189(1–2), 572–576.

    Article  CAS  Google Scholar 

  • Harja, M., Buema, G., Lupu, N., Chiriac, H., Herea, D. D., & Ciobanu, G. (2021). Fly ash coated with magnetic materials: Improved adsorbent for Cu (II) removal from wastewater. Materials, 14(1), 63.

    Article  CAS  Google Scholar 

  • Hasanzadeh Sablouei, A., & Moosavirad, S. M. (2019). Copper recovery from thickener overflow by electrocoagulation/flotation: Optimization of response surface, modeling, and sludge study. Journal of Mining and Environment, 10(4), 1013–1029.

    Google Scholar 

  • Hashim, K. S., Al Khaddar, R., Jasim, N., Shaw, A., Phipps, D., Kot, P., Pedrola, M. O., Alattabi, A. W., Abdulredha, M., & Alawsh, R. (2019). Electrocoagulation as a green technology for phosphate removal from river water. Separation and Purification Technology, 210, 135–144. https://doi.org/10.1016/j.seppur.2018.07.056

    Article  CAS  Google Scholar 

  • Hassani, G., Nasseri, S., & Gharibi, H. (2011). Removal of cyanide by electrocoagulation process. Analytical and Bioanalytical Electrochemistry, 3(6), 625–634.

    Google Scholar 

  • Hassani, G., Alinejad, A., Sadat, A., & Esmaeili, A. (2016). Optimization of landfill leachate treatment process by electrocoagulation. Electroflotation and Sedimentation Sequential Method, 11, 6705–6718. https://doi.org/10.20964/2016.08.10

  • Hsu, E., Barmak, K., West, A. C., & Park, A.-H.A. (2019). Advancements in the treatment and processing of electronic waste with sustainability: a review of metal extraction and recovery technologies. Green Chemistry, 21(5), 919–936.

    Article  CAS  Google Scholar 

  • Huang, H., Zhang, D., Zhao, Z., Zhang, P., & Gao, F. (2017). Comparison investigation on phosphate recovery from sludge anaerobic supernatant using the electrocoagulation process and chemical precipitation. Journal of Cleaner Production, 141, 429–438. https://doi.org/10.1016/j.jclepro.2016.09.127

  • Idrysy, H. E., Connelly, R., El Idrysy, H., & Connelly, R. (2012). Water-the other resource a mine needs to estimate. Procedia Engineering, 46, 206–212. https://doi.org/10.1016/j.proeng.2012.09.466

    Article  Google Scholar 

  • Ighilahriz, K., Ahmed, M. T., Djelal, H., & Maachi, R. (2014). Electrocoagulation and electro-oxidation treatment for the leachate of oil-drilling mud. Desalination and Water Treatment, 52(31–33), 5833–5839.

    Article  CAS  Google Scholar 

  • Inan, H., & Alaydın, E. (2014). Phosphate and nitrogen removal by iron produced in electrocoagulation reactor. Desalination and Water Treatment, 52(7–9), 1396–1403. https://doi.org/10.1080/19443994.2013.787950

    Article  CAS  Google Scholar 

  • Isa, M. H., Ezechi, E. H., Ahmed, Z., Magram, S. F., & Kutty, S. R. M. (2014). Boron removal by electrocoagulation and recovery. Water Research, 51, 113–123.

    Article  CAS  Google Scholar 

  • Jatoi, A. S., Hashmi, Z., Adriyani, R., Yuniarto, A., Mazari, S. A., Akhter, F., & Mubarak, N. M. (2021). Recent trends and future challenges of pesticide removal techniques–A comprehensive review. Journal of Environmental Chemical Engineering, 105571.

  • Jing, G., Ren, S., Gao, Y., Sun, W., & Gao, Z. (2020). Electrocoagulation: A promising method to treat and reuse mineral processing wastewater with high COD. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020595

  • Jordanov, S. H., Maletić, M., Dimitrov, A., Slavkov, D., & Paunović, P. (2007). Waste waters from copper ores mining/flotation in ‘Bučbim’mine: characterization and remediation. Desalination, 213(1–3), 65–71.

    Article  Google Scholar 

  • Khaled, B., Wided, B., Béchir, H., Elimame, E., Mouna, L., & Zied, T. (2019). Investigation of electrocoagulation reactor design parameters effect on the removal of cadmium from synthetic and phosphate industrial wastewater. Arabian Journal of Chemistry, 12(8), 1848–1859.

    Article  CAS  Google Scholar 

  • Khan, S., Hesham, A. E., Ahmad, A., Houbo, S., & Daqiang, C. (2010). Physio-chemical characteristics and bacterial diversity in copper mining wastewater based on 16S rRNA gene analysis. African Journal of Biotechnology, 9(46), 7891–7899.

    Article  Google Scholar 

  • Kim, J. H., & min An, B., Lim, D. H., & Park, J. Y. (2018). Electricity production and phosphorous recovery as struvite from synthetic wastewater using magnesium-air fuel cell electrocoagulation. Water Research, 132, 200–210.

    Article  Google Scholar 

  • Kim, T. T., Kim, T. T., & Zoh, K. (2020). Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes. Journal of Water Process Engineering, 33(December 2019), 101109. https://doi.org/10.1016/j.jwpe.2019.101109

  • Kinnarinen, T., Ga, A., Mamelkina, M., & Vehmaanper, P. (2020). Pressure filtration properties of sludge generated in the electrochemical treatment of mining waters. 181. https://doi.org/10.1016/j.watres.2020.115922

  • Kobya, M., Ciftci, C., Bayramoglu, M., & Sensoy, M. T. (2008). Study on the treatment of waste metal cutting fluids using electrocoagulation. Separation and Purification Technology, 60(3), 285–291.

    Article  CAS  Google Scholar 

  • Kobya, M., & Demirbas, E. (2015). Evaluations of operating parameters on treatment of can manufacturing wastewater by electrocoagulation. Journal of Water Process Engineering, 8, 64–74. https://doi.org/10.1016/j.jwpe.2015.09.006

    Article  Google Scholar 

  • Kobya, M., Demirbas, E., Dedeli, A., & Sensoy, M. T. (2010). Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes. Journal of Hazardous Materials, 173(1–3), 326–334.

    Article  CAS  Google Scholar 

  • Kobya, M., Oncel, M. S., Demirbas, E., Şık, E., Akyol, A., & Ince, M. (2014). The application of electrocoagulation process for treatment of the red mud dam wastewater from Bayer’s process. Journal of Environmental Chemical Engineering, 2(4), 2211–2220. https://doi.org/10.1016/j.jece.2014.09.008

    Article  CAS  Google Scholar 

  • Kobya, M., Gengec, E., & Demirbas, E. (2016). Operating parameters and costs assessments of a real dyehouse wastewater effluent treated by a continuous electrocoagulation process. Chemical Engineering and Processing: Process Intensification, 101, 87–100.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., Ozyonar, F., Sirtbas, G., & Gengec, E. (2017a). Treatments of alkaline non-cyanide, alkaline cyanide and acidic zinc electroplating wastewaters by electrocoagulation. Process Safety and Environmental Protection, 105, 373–385. https://doi.org/10.1016/j.psep.2016.11.020

    Article  CAS  Google Scholar 

  • Kobya, M, Öncel, M. S., Demirbas, E., & Celen, M. (2017b). Arsenic and boron removal from spring and groundwater samples in boron mining regions of Turkey by electrocoagulation and ion-exchange consecutive processes. 93(September 2016), 288–296. https://doi.org/10.5004/dwt.2017.20821

  • Kobya, M., Soltani, R. D. C., Omwene, P. I., & Khataee, A. (2020). A review on decontamination of arsenic-contained water by electrocoagulation: Reactor configurations and operating cost along with removal mechanisms. Environmental Technology & Innovation, 17, 100519.

  • Korac, M., & Kamberovic, Z. (2006). Characterization of wastewater streams from Bor site. Proceedings of the 4th Balkan Conference on Metallurgy, 411–421.

  • Kumarasinghe, D., Pettigrew, L., & Nghiem, L. D. (2009). Removal of heavy metals from mining impacted water by an electrocoagulation-ultrafiltration hybrid process. Desalination and Water Treatment, 11(1–3), 66–72.

    Article  CAS  Google Scholar 

  • Kuokkanen, V., Kuokkanen, T., Rämö, J., Lassi, U., & Roininen, J. (2015). Removal of phosphate from wastewaters for further utilization using electrocoagulation with hybrid electrodes–Techno-economic studies. Journal of Water Process Engineering, 8, e50–e57.

    Article  Google Scholar 

  • Kuokkanen, V., Kuokkanen, M., Hynynen, I., & Kuokkanen, T. (2021). Electrocoagulation treatment of metallurgical industry wastewater–A laboratory scale batch and pilot scale continuous study. Hydrometallurgy, 202, 105596.

    Article  CAS  Google Scholar 

  • Laus, R., Geremias, R., Vasconcelos, H. L., Laranjeira, M. C. M., & Fávere, V. T. (2007). Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres. Journal of Hazardous Materials, 149(2), 471–474.

    Article  CAS  Google Scholar 

  • Li, L., Yue, F., Li, Y., Yang, A., Li, J., Lv, Y., & Zhong, X. (2020a). Degradation pathway and microbial mechanism of high-concentration thiocyanate in gold mine tailings wastewater. RSC Advances, 10(43), 25679–25684. https://doi.org/10.1039/D0RA03330H

    Article  CAS  Google Scholar 

  • Li, P., Chen, P., Wang, G., Wang, L., Wang, X., Li, Y., Zhang, W., Jiang, H., & Chen, H. (2020b). Uranium elimination and recovery from wastewater with ligand chelation-enhanced electrocoagulation. Chemical Engineering Journal, 124819.

  • Li, X., Song, J., Guo, J., Wang, Z., & Feng, Q. (2011). Landfill leachate treatment using electrocoagulation. Procedia Environmental Sciences, 10, 1159–1164. https://doi.org/10.1016/j.proenv.2011.09.185

    Article  CAS  Google Scholar 

  • Liu, Y., Yang, J., Jiang, W., Chen, Y., Yang, C., Wang, T., & Li, Y. (2018). Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes. Chemosphere, 205, 601–609. https://doi.org/10.1016/j.chemosphere.2018.04.113

  • Lu, J., Zhang, P., & Li, J. (2021). Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. Journal of Environmental Management, 296, 113259.

    Article  CAS  Google Scholar 

  • Mahiroglu, A., Tarlan-Yel, E., & Sevimli, M. F. (2009). Treatment of combined acid mine drainage (AMD)—Flotation circuit effluents from copper mine via Fenton’s process. Journal of Hazardous Materials, 166(2–3), 782–787.

    Article  CAS  Google Scholar 

  • Mamelkina, M. A., Tuunila, R., Sillänpää, M., & Häkkinen, A. (2017). Electrocoagulation treatment of real mining waters and solid-liquid separation of solids formed. In Mine Water and Circular Economy. IMWA Lappeenranta, Finland.

  • Mamelkina, M. A., Vasilyev, F., Tuunila, R., Sillanpää, M., & Häkkinen, A. (2019). Investigation of the parameters affecting the treatment of mining waters by electrocoagulation. Journal of Water Process Engineering, 32(August), 100929. https://doi.org/10.1016/j.jwpe.2019.100929

  • Mamelkina, M. A., Herraiz-carboné, M., Cotillas, S., Lacasa, E., Sáez, C., Tuunila, R., Sillanpää, M., Häkkinen, A., Rodrigo, M. A., Sillanpä, M., Häkkinen, A., Rodrigo, M. A., Lacasa, E., Sáez, C., Tuunila, R., Sillanpää, M., Häkkinen, A., & Rodrigo, M. A. (2020a). Treatment of mining wastewater polluted with cyanide by coagulation processes: A mechanistic study. Separation and Purification Technology, 237, 116345. https://doi.org/10.1016/j.seppur.2019.116345

  • Mamelkina, M. A., Tuunila, R., & Häkkinen, A. (2020b). Scale-up of electrochemical units for mining waters treatment. IMWA, 163–167.

  • Martinez, G. V. F., Torres, J. R. P., García, J. L. V., Munive, G. C. T., & Zamarripa, G. G. (2012). Kinetic aspects of gold and silver recovery in cementation with zinc power and electrocoagulation iron process. Advances in Chemical Engineering and Science, 2(3). https://doi.org/10.4236/aces.2012.23040

  • McIntyre, N., Woodley, A., Danoucaras, A., & Coles, N. (2015). Water management capacity building to support rapidly developing mining economies. Water Policy, 17(6), 1191–1208.

    Article  Google Scholar 

  • Mechelhoff, M., Kelsall, G. H., & Graham, N. J. D. (2013). Electrochemical behaviour of aluminium in electrocoagulation processes. Chemical Engineering Science, 95, 301–312.

    Article  CAS  Google Scholar 

  • Mehdipoor, M. A., & Moosavirad, S. M. (2020). Effect of Holed Ferrum electrodes (HFE) on the efficiency of the electrocoagulation process for copper recovery and optimization of parameters, using RSM. Hydrometallurgy, 194, 105313.

    Article  CAS  Google Scholar 

  • Merma, A. G., Santos, B. F., Rego, A. S. C., Hacha, R. R., & Torem, M. L. (2020). Treatment of oily wastewater from mining industry using electrocoagulation: Fundamentals and process optimization. Journal of Materials Research and Technology, 9(6), 15164–15176.

    Article  CAS  Google Scholar 

  • Millar, G. J., Lin, J., Arshad, A., & Couperthwaite, S. J. (2014). Evaluation of electrocoagulation for the pre-treatment of coal seam water. Journal of Water Process Engineering, 4, 166–178.

    Article  Google Scholar 

  • Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. (2008). Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresource Technology, 99(5), 930–936.

    Article  CAS  Google Scholar 

  • Moneer, A. A., El-Shafei, A. A., Elewa, M. M., & Naim, M. M. (2016). Removal of copper from simulated wastewater by electrocoagulation/floatation technique. Desalination and Water Treatment, 57(48–49), 22824–22834.

    Article  CAS  Google Scholar 

  • Moosavirad, S. M. (2017). Treatment and operation cost analysis of greywater by electrocoagulation and comparison with coagulation process in mining areas. Separation Science and Technology, 52(10), 1742–1750.

    Article  CAS  Google Scholar 

  • Moosavirad, S. M., & Hasanzadeh-Sablouei, A. (2020). Removal of cadmium from the leaching solution using electrocoagulation. Environment and Water Engineering, 6(4), 415–429.

    Google Scholar 

  • More, A. G., & Gupta, S. K. (2021). Removal of chromium from electroplating industry wastewater using bioelectrochemical system: Kinetic study and statistical analysis. Journal of Hazardous, Toxic, and Radioactive Waste, 25(2), 4020069.

  • Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032

    Article  Google Scholar 

  • Nariyan, E., Sillanpää, M., & Wolkersdorfer, C. (2016). Cadmium removal from real mine water by electrocoagulation. Mining Meets Water – Conflicts and Solutions, IMWA, Freiberg/Germany.

  • Nariyan, E., Sillanpää, M., & Wolkersdorfer, C. (2018a). Uranium removal from Pyhäsalmi/Finland mine water by batch electrocoagulation and optimization with the response surface methodology. Separation and Purification Technology, 193, 386–397. https://doi.org/10.1016/j.seppur.2017.10.020

    Article  CAS  Google Scholar 

  • Nariyan, E., Wolkersdorfer, C., & Sillanpää, M. (2018b). Sulfate removal from acid mine water from the deepest active European mine by precipitation and various electrocoagulation configurations. Journal of Environmental Management, 227, 162–171.

    Article  CAS  Google Scholar 

  • Neculita, C. M., Coudert, L., & Lefebvre, O. P. (2019). Comparative efficiency of microbial fuel cells and electrocoagulation for the treatment of iron-rich acid mine drainage. Biochemical Pharmacology, 103149. https://doi.org/10.1016/j.jece.2019.103149

  • Nuñez, P., Hansen, H. K., Aguirre, S., & Maureira, C. (2011). Electrocoagulation of arsenic using iron nanoparticles to treat copper mineral processing wastewater. Separation and Purification Technology, 79(2), 285–290. https://doi.org/10.1016/j.seppur.2011.02.028

  • Nurmesniemi, E.-T., Hu, T., Rajaniemi, K., & Lassi, U. (2021). Sulphate removal from mine water by precipitation as ettringite by newly developed electrochemical aluminium dosing method. Desalination and Water Treatment, 217, 195–202.

    Article  CAS  Google Scholar 

  • Odongo, I. E., & McFarland, M. J. (2014). Electrocoagulation treatment of metal finishing wastewater. Water Environment Research, 86(7), 579–583.

    Article  CAS  Google Scholar 

  • Olmez-Hanci, T., Kartal, Z., & Arslan-Alaton, İ. (2012). Electrocoagulation of commercial naphthalene sulfonates: Process optimization and assessment of implementation potential. Journal of Environmental Management, 99, 44–51.

    Article  CAS  Google Scholar 

  • Oncel, M. S., Muhcu, A., Demirbas, E., & Kobya, M. (2013). A comparative study of chemical precipitation and electrocoagulation for treatment of coal acid drainage wastewater. Journal of Environmental Chemical Engineering, 1(4), 989–995.

    Article  CAS  Google Scholar 

  • Ozyonar, F., & Karagozoglu, B. (2011). Operating cost analysis and treatment of domestic wastewater by electrocoagulation using aluminum electrodes. Polish Journal of Environmental Studies, 20(1), 173.

    Google Scholar 

  • Panizza, M., & Martinez-Huitle, C. A. (2013). Role of electrode materials for the anodic oxidation of a real landfill leachate – Comparison between Ti–Ru–Sn ternary oxide, PbO2 and boron-doped diamond anode. Chemosphere, 90(4), 1455–1460. https://doi.org/10.1016/j.chemosphere.2012.09.006

    Article  CAS  Google Scholar 

  • Parga, J. R., Rodríguez, M., Vázquez, V., Valenzuela, J. L., & Moreno, H. (2012). Recovery of silver and gold from cyanide solution by magnetic species formed in the electrocoagulation process. Mineral Processing and Extractive Metallurgy Review, 33(6), 363–373.

    Article  CAS  Google Scholar 

  • Parga, J. R., Munive, G. T., Valenzuela, J. L., Vazquez, V. V, & Zamarripa, G. G. (2013). Copper recovery from barren cyanide solution by using electrocoagulation iron process. Advances in Chemical Engineering and Science, 3(2). https://doi.org/10.4236/aces.2013.32018

  • Patel, S. R., & Parikh, S. P. (2021). Chromium removal from industrial effluent by electrocoagulation: Operating cost and kinetic analysis. Journal of Environmental Treatment Techniques, 9(3), 621–628.

    Google Scholar 

  • Pikna, L., Hezelova, M., Morillon, A., Algermissen, D., Milkovic, O., Findorak, R., Cesnek, M., & Briancin, J. (2020). Recovery of chromium from slags leachates by electrocoagulation and solid product characterization. Metals, 10(12). https://doi.org/10.3390/met10121593

  • Pozo, G., Pongy, S., Keller, J., Ledezma, P., & Freguia, S. (2017). A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage. Water Research, 126, 411–420. https://doi.org/10.1016/j.watres.2017.09.058

    Article  CAS  Google Scholar 

  • Pujol P, A. A., Monroy G, F., & Bustos, B. E. (2017). Electrocoagulation applied to the decontamination of stainless steel parts contaminated with uranium. 2017 LAS/ANS Symposium: New Technologies for a Nuclear Power Expansion Program.

  • Qi-yan, F., Xiang-dong, L. I., Yu-jie, C., Lei, M., & Qing-jun, M. (2007). Removal of humic acid from groundwater by electrocoagulation. Journal of China University of Mining and Technology, 17(4), 513–515, 520.

  • Radić, S., Vujčić, V., Cvetković, Ž, Cvjetko, P., & Oreščanin, V. (2014). The efficiency of combined CaO/electrochemical treatment in removal of acid mine drainage induced toxicity and genotoxicity. Science of the Total Environment, 466, 84–89.

    Article  Google Scholar 

  • Rahimdel, M. J., & Noferesti, H. (2020). Investment preferences of Iran’s mineral extraction sector with a focus on the productivity of the energy consumption, water and labor force. Resources Policy, 67, 101695. https://doi.org/10.1016/j.resourpol.2020.101695

  • Rakotondrabe, F., Ngoupayou, J. R. N., Mfonka, Z., Rasolomanana, E. H., Abolo, A. J. N., & Ako, A. A. (2018). Water quality assessment in the Bétaré-Oya gold mining area (East-Cameroon): Multivariate statistical analysis approach. Science of the Total Environment, 610, 831–844.

    Article  Google Scholar 

  • Rathi, B. S., Kumar, P. S., & Show, P.-L. (2021). A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. Journal of Hazardous Materials, 409, 124413.

    Article  CAS  Google Scholar 

  • Rodrigues, C., Follmann, H. V. D. M., Núñez-Gómez, D., Nagel-Hassemer, M. E., Lapolli, F. R., & Lobo-Recio, M. Á. (2020). Sulfate removal from mine-impacted water by electrocoagulation: Statistical study, factorial design, and kinetics. Environmental Science and Pollution Research, 27(31), 39572–39583. https://doi.org/10.1007/s11356-020-09758-1

    Article  CAS  Google Scholar 

  • Rodriguez, J., Stopić, S., Krause, G., & Friedrich, B. (2007). Feasibility assessment of electrocoagulation towards a new sustainable wastewater treatment. Environmental Science and Pollution Research-International, 14(7), 477–482.

    Article  CAS  Google Scholar 

  • Rodriguez-Prado, A. (2020). Continuous electrocoagulation system for mining wastewater treatment. CIM Journal, 11(3), 182–187. https://doi.org/10.1080/19236026.2020.1757985

    Article  Google Scholar 

  • Rusdianasari, R. (2017). Application of electrocoagulation process for continuous coal stockpile wastewater treatment system. IJFAC (Indonesian Journal of Fundamental and Applied Chemistry), 2(1), 10–15.

    Article  Google Scholar 

  • Saez, C., Mamelkina, M., Häkkinen, A., Cotillas, S., & Tuunila, R. (2017). Removal of sulfate from mining waters by electrocoagulation. Separation and Purification Technology, 182, 87–93.

    Article  Google Scholar 

  • Salah, B., Dia, O., Drogui, P., Buelna, G., & Dub, R. (2016). Chemosphere electrocoagulation of bio-filtrated landfill leachate: Fractionation of organic matter and influence of anode materials. https://doi.org/10.1016/j.chemosphere.2016.10.092

  • Samaniego, J., & Tanchuling, M. A. N. (2019). Treatment of small scale gold mining wastewater using pilot-scale sedimentation and Cocopeat filter bed system. Global Journal of Environmental Science and Management, 5(4), 461–470.

    CAS  Google Scholar 

  • Sandoval, M. A., Fuentes, R., Thiam, A., & Salazar, R. (2020). Arsenic and fluoride removal by electrocoagulation process: A general review. Science of The Total Environment, 753, 142108.

  • Scammacca, O., Gunzburger, Y., & Mehdizadeh, R. (2021). Gold mining in French Guiana: A multi-criteria classification of mining projects for risk assessment at the territorial scale. The Extractive Industries and Society, 8(1), 32–43.

    Article  Google Scholar 

  • Sharma, D., Chaudhari, P. K., & Prajapati, A. K. (2020). Removal of chromium (VI) and lead from electroplating effluent using electrocoagulation. Separation Science and Technology, 55(2), 321–331. https://doi.org/10.1080/01496395.2018.1563157

    Article  CAS  Google Scholar 

  • Silva, D. M. L. da, Carneiro, M. T. W. D., & Ribeiro, J. (2019). Boron removal from mining and synthetic effluents by electrocoagulation using aluminum electrodes. The Scientific World Journal, 2019, 3746964. https://doi.org/10.1155/2019/3746964

  • Simate, G. S., & Ndlovu, S. (2014). Acid mine drainage: Challenges and opportunities. Journal of Environmental Chemical Engineering, 2(3), 1785–1803.

    Article  CAS  Google Scholar 

  • Skullong, S., Thianpong, C., Jayranaiwachira, N., & Promvonge, P. (2016). Experimental and numerical heat transfer investigation in turbulent square-duct flow through oblique horseshoe baffles. Chemical Engineering and Processing: Process Intensification, 99, 58–71.

    Article  CAS  Google Scholar 

  • Smoczyński, L., Kalinowski, S., Ratnaweera, H., Kosobucka, M., Trifescu, M., & Pieczulis-Smoczyńska, K. (2017). Electrocoagulation of municipal wastewater - a pilot-scale test. Desalination and Water Treatment, 72, 162–168. https://doi.org/10.5004/dwt.2017.20654

    Article  CAS  Google Scholar 

  • Solak, M., Kılıç, M., Hüseyin, Y., & Şencan, A. (2009). Removal of suspended solids and turbidity from marble processing wastewaters by electrocoagulation: Comparison of electrode materials and electrode connection systems. Journal of Hazardous Materials, 172(1), 345–352.

    Article  CAS  Google Scholar 

  • Soto-Benavente, M., Rodriguez-Achata, L., Olivera, M., Sanchez, V. A., Nano, C. C., & Garate Quispe, J. (2020). Health risks due to the presence of heavy metals in agricultural products cultivated in areas abandoned by gold mining in the Peruvian Amazon. Scientia Agropecuaria, 11(1), 49–59.

    Article  CAS  Google Scholar 

  • Taylor, P., Orescanin, V., & Kollar, R. (2012). A combined CaO/electrochemical treatment of the acid mine drainage from the “Robule” Lake. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 37–41. https://doi.org/10.1080/10934529.2012.668405

  • Tegladza, I. D., Xu, Q., Xu, K., Lv, G., & Lu, J. (2021). Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal. Process Safety and Environmental Protection, 146, 169–189.

    Article  CAS  Google Scholar 

  • Thakur, L. S., Goyal, H., & Mondal, P. (2019). Simultaneous removal of arsenic and fluoride from synthetic solution through continuous electrocoagulation: Operating cost and sludge utilization. Journal of Environmental Chemical Engineering, 7(1), 102829.

  • Thakur, L. S., & Mondal, P. (2016). Techno-economic evaluation of simultaneous arsenic and fluoride removal from synthetic groundwater by electrocoagulation process: Optimization through response surface methodology. Desalination and Water Treatment, 57(59), 28847–28863.

    Article  CAS  Google Scholar 

  • Touahria, S., Hazourli, S., Touahria, K., Eulmi, A., & Aitbara, A. (2016). Clarification of industrial mining wastewater using electrocoagulation. International Journal of Electrochemical Science, 11, 5710–5723.

    Article  CAS  Google Scholar 

  • Un, U. T., Onpeker, S. E., & Ozel, E. (2017). The treatment of chromium containing wastewater using electrocoagulation and the production of ceramic pigments from the resulting sludge. Journal of Environmental Management, 200, 196–203.

    Google Scholar 

  • USEPA (US Environmental Protection Agency). (2012). Ground water and drinking water. http://www.water.epa.gov/drink/index.cfm

  • Valenzuela, J. L., Uribe, J. C. S., Vázquez, V. M. V., Munive, G. del C. T., Romero, M. A. E., & Torres, J. R. P. (2018). Recovery of gold and silver by pressure cyanidation leaching and electrocoagulation. 2018 SME Annual Conference: International: Updates on Mining in Mexico, 2829088.

  • Vasudevan, S., Lakshmi, J., & Sozhan, G. (2012). Optimization of electrocoagulation process for the simultaneous removal of mercury, lead, and nickel from contaminated water. Environmental Science and Pollution Research, 19(7), 2734–2744.

    Article  CAS  Google Scholar 

  • Vasudevan, S., Lakshmi, J., & Sozhan, G. (2013). Electrochemically assisted coagulation for the removal of boron from water using zinc anode. Desalination, 310, 122–129.

    Article  CAS  Google Scholar 

  • Vázquez, V., Parga, J., Valenzuela, J. L., Figueroa, G., Valenzuela, A., & Munive, G. (2014). Recovery of silver from cyanide solutions using electrochemical process like alternative for Merrill-Crowe process. Materials Sciences and Applications, 5(12), 863.

    Article  Google Scholar 

  • Venkatasaravanan, R., Ramesh, S., & Gunasheela, M. (2016). Removal of heavy metals from Acid Mine Drainage (AMD) contaminated with high concentrations of Fe, Zn, and Cu using electrocoagulation. Advanced Porous Materials, 4, 1–8. https://doi.org/10.1166/apm.2016.1095

    Article  Google Scholar 

  • Walling, F. B., & Otts, L. E. (1967). Water requirements of the iron and steel industry. US Government Printing Office, Washington, 67–220.

  • Wang, B., Guo, X., & Bai, P. (2014). Removal technology of boron dissolved in aqueous solutions–A review. Colloids and Surfaces a: Physicochemical and Engineering Aspects, 444, 338–344.

    Article  CAS  Google Scholar 

  • Wang, C., Li, T., Yu, G., & Deng, S. (2021). Removal of low concentrations of nickel ions in electroplating wastewater by combination of electrodialysis and electrodeposition. Chemosphere, 263, 128208.

  • WHO. (2011). Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS). 38(4), 104–108.

  • Wu, M., Hu, Y., Liu, R., Lin, S., Sun, W., & Lu, H. (2019). Electrocoagulation method for treatment and reuse of sulphide mineral processing wastewater: Characterization and kinetics. Science of The Total Environment, 696, 134063. https://doi.org/10.1016/j.scitotenv.2019.134063

  • Xu, L., Cao, G., Xu, X., Liu, S., Duan, Z., He, C., Wang, Y., & Huang, Q. (2017). Simultaneous removal of cadmium, zinc and manganese using electrocoagulation: Influence of operating parameters and electrolyte nature. Journal of Environmental Management, 204, 394–403.

    Article  CAS  Google Scholar 

  • Zhang, X., Gao, L., Barrett, D., & Chen, Y. (2014). Evaluating water management practice for sustainable mining. Water, 6(2), 414–433.

    Article  Google Scholar 

  • Zhang, X., Lin, H., & Hu, B. (2016). Phosphorus removal and recovery from dairy manure by electrocoagulation. RSC Advances, 6(63), 57960–57968.

    Article  CAS  Google Scholar 

  • Zhou, W., Liu, X., Lyu, X., Gao, W., Su, H., & Li, C. (2022). Extraction and separation of copper and iron from copper smelting slag: A review. Journal of Cleaner Production, 133095.

  • Zhu, J., Wu, F., Pan, X., Guo, J., & Wen, D. (2011). Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes. Journal of Environmental Sciences, 23(7), 1066–1071.

    Article  CAS  Google Scholar 

  • Zhu, M., Yin, X., Chen, W., Yi, Z., & Tian, H. (2019). Removal of sulphate from mine waters by electrocoagulation/rice straw activated carbon adsorption coupling in a batch system: Optimization of process via response surface methodology. Journal of Water Reuse and Desalination, 9(2), 163–172.

    Article  CAS  Google Scholar 

  • Zolfaghari, M., Magdouli, S., Tanabene, R., Pierre, S., Martial, R., Saffar, T., Technologiques, C., Ctri, I., Collège, B., & Noranda, R. (2020). Pragmatic strategy for the removal of ammonia from gold mine effluents using a combination of electro-coagulation and zeolite cation exchange processes: A staged approach. Journal of Water Process Engineering, 37(July), 101512. https://doi.org/10.1016/j.jwpe.2020.101512

Download references

Funding

This research was supported by Iran National Science Foundation (INSF) under the grant number 99029020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data collection and analysis were performed by Ahmad Shahedi, Ahmad Khodadadi Darban, Ahmad Jamshidi-Zanjani, and Mehdi Homaee. The first draft of the manuscript was written by Ahmad Khodadadi Darban, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ahmad Khodadadi Darban.

Ethics declarations

Ethics approval

No life science threat was practiced in this research.

Animal research

No human participants were involved in this study.

Consent for publication

No human participants were involved in this study.

Consent to participate

No human participants were involved in this study.

Competing of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahedi, A., Darban, A.K., Jamshidi-Zanjani, A. et al. An overview of the application of electrocoagulation for mine wastewater treatment. Environ Monit Assess 195, 522 (2023). https://doi.org/10.1007/s10661-023-11044-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11044-9

Keywords

Navigation