Skip to main content
Log in

Seasonal assessment of the distribution, source apportionment, and risk of water-contaminated polycyclic aromatic hydrocarbons (PAHs)

  • Correspondence
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The research aims to evaluate the seasonal differences in the distribution, source, and risks of water-contaminated PAHs. The PAHs were extracted by the liquid–liquid method and analyzed with GC–MS, and a total of eight PAHs were detected. There was a percentage increase in the average concentration of the PAHs from the wet to the dry season in the range of 20 (Anthracene)–350 (Pyrene)%. Total PAHs (∑PAHs) range from 0.31 to 1.23 mg/l in the wet period and from 0.42 to 1.96 mg/l in the dry period. The distribution of the average PAHs in mg/l showed that Fluoranthene ≤ Pyrene < Acenaphthene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in wet period and while Fluoranthene < Acenaphthene < Pyrene < Fluorene < Phenanthrene < Acenaphthylene < Anthracene < Naphthalene in the dry period. The children were exposed to non-carcinogenic risk through non-dietary ingestion due to the accumulative effect (HI) of the PAHs in the dry period. Furthermore, the naphthalene was responsible for ecological and carcinogenic risk in the wet period, while the fluorene, phenanthrene, and anthracene were responsible for ecological and carcinogenic risk in the dry period. However, while adults and children are both susceptible to carcinogenic risk through the oral channel during the dry period, only children are susceptible to non-carcinogenic risk through this pathway. The multivariate statistical analysis revealed the influence of physicochemical parameters on the detected PAHs and also showed the PAHs' sources to be mainly combustion, pyrolysis, and vehicular emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25, 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2019). Levels of polycyclic aromatic hydrocarbons in the water and sediment of Buffalo River Estuary, South Africa and their health risk assessment. Archives of Environmental Contamination and Toxicology, 76, 657–669. https://doi.org/10.1007/s00244-019-00617-w

    Article  CAS  Google Scholar 

  • Adeyi, A. A., & Oyeleke, P. (2017). Heavy metals and polycyclic aromatic hydrocarbons in soil from E-waste dumpsites in Lagos and Ibadan, Nigeria. Journal of Health and Pollution, 7, 71–84. https://doi.org/10.5696/2156-9614-7.15.71

    Article  Google Scholar 

  • Ali, M. U., Siyi, L., Yousaf, B., Abbas, Q., Hameed, R., Zheng, C., Kuang, X., & Wong, M. H. (2021). Emission sources and full spectrum of health impacts of black carbon associated polycyclic aromatic hydrocarbons (PAHs) in urban environment: A review. Critical Reviews in Environmental Science and Technology, 51, 857–896. https://doi.org/10.1080/10643389.2020.1738854

    Article  Google Scholar 

  • Ali, N. (2019). Polycyclic aromatic hydrocarbons (PAHs) in indoor air and dust samples of different Saudi microenvironments; health and carcinogenic risk assessment for the general population. Science of the Total Environment, 696, 133995. https://doi.org/10.1016/j.scitotenv.2019.133995

    Article  CAS  Google Scholar 

  • Ali, N., Ismail, I. M. I., Khoder, M., Shamy, M., Alghamdi, M., Al Khalaf, A., & Costa, M. (2017). Polycyclic aromatic hydrocarbons (PAHs) in the settled dust of automobile workshops, health and carcinogenic risk evaluation. Science of the Total Environment, 601–602, 478–484. https://doi.org/10.1016/j.scitotenv.2017.05.110

    Article  CAS  Google Scholar 

  • Ambade, B., Kumar, A., & Sahu, L. K. (2021b). Characterization and health risk assessment of particulate bound polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor atmosphere of Central East India. Environmental Science and Pollution Research, 28, 56269–56280. https://doi.org/10.1007/s11356-021-14606-x

    Article  Google Scholar 

  • Ambade, B., Sethi, S. S., Kumar, A., Sankar, T. K., & Kurwadkar, S. (2021a). Health risk assessment, composition, and distribution of polycyclic aromatic hydrocarbons (PAHs) in drinking water of Southern Jharkhand, East India. Archives of Environmental Contamination and Toxicology, 80, 120–133. https://doi.org/10.1007/s00244-020-00779-y

    Article  CAS  Google Scholar 

  • Amoakwah, E., Ahsan, S., Rahman, M. A., Asamoah, E., Essumang, D. K., Ali, M., & Islam, K. R. (2020). Assessment of heavy metal pollution of soil-water-vegetative ecosystems associated with artisanal gold mining. Soil and Sediment Contamination: an International Journal, 29, 788–803. https://doi.org/10.1080/15320383.2020.1777936

    Article  CAS  Google Scholar 

  • Areguamen, O. I., Calvin, N. N., Gimba, C. E., Okunola, O. J., Abdulkadir, A. T., & Elebo, A. (2023). Assessment of seasonal variation in distribution, source identification, and risk of polycyclic aromatic hydrocarbon (PAH)-contaminated sediment of Ikpoba River, South-South Nigeria. Environmental Monitoring and Assessment, 195, 302. https://doi.org/10.1007/s10661-023-10927-1

    Article  CAS  Google Scholar 

  • Barhoumi, B., Beldean-Galea, M. S., Al-Rawabdeh, A. M., Roba, C., Martonos, I. M., Bălc, R., Kahlaoui, M., Touil, S., Tedetti, M., Driss, M. R., & Baciu, C. (2019). Occurrence, distribution and ecological risk of trace metals and organic pollutants in surface sediments from a Southeastern European river (Someşu Mic River, Romania). Science of the Total Environment, 660, 660–676. https://doi.org/10.1016/j.scitotenv.2018.12.428

    Article  CAS  Google Scholar 

  • Boehm, P. D. (1964). 15. Polycyclic aromatic hydrocarbons (PAHs). In R. D. Morrison & B. L. Murphy (Eds.), Environmental forensics (pp. 313–337). Burlington: Academic Press. https://doi.org/10.1016/B978-012507751-4/50037-9

    Chapter  Google Scholar 

  • Cai, T., Ding, Y., Zhang, Z., Wang, X., Wang, T., Ren, Y., & Dong, Y. (2019). Effects of total organic carbon content and leaching water volume on migration behavior of polycyclic aromatic hydrocarbons in soils by column leaching tests. Environmental Pollution, 254, 112981. https://doi.org/10.1016/j.envpol.2019.112981

    Article  CAS  Google Scholar 

  • Chakraborty, P., Gadhavi, H., Prithiviraj, B., Mukhopadhyay, M., Khuman, S. N., Nakamura, M., & Spak, S. N. (2021). Passive air sampling of PCDD/Fs, PCBs, PAEs, DEHA, and PAHs from informal electronic waste recycling and allied sectors in Indian megacities. Environmental Science and Technology, 55, 9469–9478. https://doi.org/10.1021/acs.est.1c01460

    Article  CAS  Google Scholar 

  • Chalghmi, H., Bourdineaud, J.-P., Chbani, I., Haouas, Z., Bouzid, S., Er-Raioui, H., & Saidane-Mosbahi, D. (2020). Occurrence, sources and effects of polycyclic aromatic hydrocarbons in the Tunis lagoon, Tunisia: An integrated approach using multi-level biological responses in Ruditapes decussatus. Environmental Science and Pollution Research, 27, 3661–3674. https://doi.org/10.1007/s11356-019-04220-3

    Article  CAS  Google Scholar 

  • Chen, H., Zhang, Z., Tian, F., Zhang, L., Li, Y., Cai, W., & Jia, X. (2018). The effect of pH on the acute toxicity of phenanthrene in a marine microalgae Chlorella salina. Science and Reports, 8, 17577. https://doi.org/10.1038/s41598-018-35686-9

    Article  CAS  Google Scholar 

  • Clune, J. W., Crawford, J. K., & Boyer, E. W. (2020). Nitrogen and phosphorus concentration thresholds toward establishing water quality criteria for Pennsylvania, USA. Water, 12, 3550. https://doi.org/10.3390/w12123550

    Article  CAS  Google Scholar 

  • Daso, A. P., Akortia, E., & Okonkwo, J. O. (2016). Concentration profiles, source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soils from Agbogbloshie e-waste dismantling site, Accra, Ghana. Environmental Science and Pollution Research, 23, 10883–10894. https://doi.org/10.1007/s11356-016-6311-3

    Article  CAS  Google Scholar 

  • Dong, L., Lin, L., He, J., Pan, X., Wu, X., Yang, Y., Jing, Z., Zhang, S., & Yin, G. (2022). PAHs in the surface water and sediments of the middle and lower reaches of the Han River, China: Occurrence, source, and probabilistic risk assessment. Process Safety and Environmental Protection, 164, 208–218. https://doi.org/10.1016/j.psep.2022.06.009

    Article  CAS  Google Scholar 

  • Duodu, G. O., Ogogo, K. N., Mummullage, S., Harden, F., Goonetilleke, A., & Ayoko, G. A. (2017). Source apportionment and risk assessment of PAHs in Brisbane River sediment, Australia. Ecological Indicators, 73, 784–799. https://doi.org/10.1016/j.ecolind.2016.10.038

    Article  CAS  Google Scholar 

  • Emoyan, O. O., Onocha, E. O., & Tesi, G. O. (2020e). Concentration assessment and source evaluation of 16 priority polycyclic aromatic hydrocarbons in soils from selected vehicle-parks in southern Nigeria. Scientific African, 7, e00296. https://doi.org/10.1016/j.sciaf.2020.e00296

    Article  Google Scholar 

  • Eze, E. (2017). Impact of abattoir effluent on the quality f Asata and Owo streams in Enugu, South Eastern Nigeria, Thesis. http://repository.unn.edu.ng/handle/123456789/5036 (accessed December 29, 2022).

  • Garcés-Ordóñez, O., Saldarriaga-Vélez, J. F., Espinosa-Díaz, L. F., Canals, M., Sánchez-Vidal, A., & Thiel, M. (2022). A systematic review on microplastic pollution in water, sediments, and organisms from 50 coastal lagoons across the globe. Environmental Pollution., 315, 120366. https://doi.org/10.1016/j.envpol.2022.120366

    Article  CAS  Google Scholar 

  • Garzon-Vidueira, R., Rial-Otero, R., Garcia-Nocelo, M. L., Rivas-Gonzalez, E., Moure-Gonzalez, D., Fompedriña-Roca, D., Vadillo-Santos, I., & Simal-Gandara, J. (2020). Identification of nitrates origin in Limia river basin and pollution-determinant factors. Agriculture, Ecosystems and Environment, 290, 106775. https://doi.org/10.1016/j.agee.2019.106775

    Article  CAS  Google Scholar 

  • Gaurav, G. K., Mehmood, T., Kumar, M., Cheng, L., Sathishkumar, K., Kumar, A., & Yadav, D. (2021). Review on polycyclic aromatic hydrocarbons (PAHs) migration from wastewater. Journal of Contaminant Hydrology., 236, 103715. https://doi.org/10.1016/j.jconhyd.2020.103715

    Article  CAS  Google Scholar 

  • Gbeddy, G., Egodawatta, P., Akortia, E., & Goonetilleke, A. (2022). Inherent and external factors influencing the distribution of PAHs, hydroxy-PAHs, carbonyl-PAHs and nitro-PAHs in urban road dust. Environmental Pollution, 308, 119705. https://doi.org/10.1016/j.envpol.2022.119705

    Article  CAS  Google Scholar 

  • Gope, M., Masto, R. E., George, J., & Balachandran, S. (2018). Exposure and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the street dust of Asansol city, India. Sustainable Cities and Society, 38, 616–626. https://doi.org/10.1016/j.scs.2018.01.006

    Article  Google Scholar 

  • Guo, J., Luo, X., Yang, Y., Lv, Y., Zeng, Y., & Mai, B. (2022). Age- and sex-specific dermal exposure of polycyclic aromatic hydrocarbons in the general population of a city in south China. Environmental Pollution, 310, 119802. https://doi.org/10.1016/j.envpol.2022.119802

    Article  CAS  Google Scholar 

  • Herngren, L., Goonetilleke, A., Ayoko, G. A., & Mostert, M. M. M. (2010). Distribution of polycyclic aromatic hydrocarbons in urban stormwater in Queensland, Australia. Environmental Pollution, 158, 2848–2856. https://doi.org/10.1016/j.envpol.2010.06.015

    Article  CAS  Google Scholar 

  • Hou, F., Zhang, H., Xie, W., Zhou, X., Zhu, X., & Zhang, D. (2020). Co-occurrence patterns and assembly processes of microeukaryotic communities in an early-spring diatom bloom. Science of the Total Environment, 711, 134624. https://doi.org/10.1016/j.scitotenv.2019.134624

    Article  CAS  Google Scholar 

  • Hu, Q., Liu, S., Liu, Y., Fang, X., Xu, J., Chen, X., Zhu, F., & Ouyang, G. (2019). Development of an on-site detection approach for rapid and highly sensitive determination of persistent organic pollutants in real aquatic environment. Analytica Chimica Acta, 1050, 88–94. https://doi.org/10.1016/j.aca.2018.11.010

    Article  CAS  Google Scholar 

  • Hussain, K., Hoque, R., Balachandran, S., Medhi, S., Idris, M., Rahman, M., & Hussain, F. (2018). Monitoring and risk analysis of PAHs in the environment, pp. 1–35. https://doi.org/10.1007/978-3-319-58538-3_29-2.

  • Inam, E., Offiong, N.-A., Essien, J., Kang, S., Kang, S.-Y., & Antia, B. (2015). Polycyclic aromatic hydrocarbons loads and potential risks in freshwater ecosystem of the Ikpa River Basin, Niger Delta—Nigeria. Environmental Monitoring and Assessment, 188, 49. https://doi.org/10.1007/s10661-015-5038-9

    Article  CAS  Google Scholar 

  • Iqbal, Z., Abbas, F., Mahmood, A., Ibrahim, M., Gul, M., Yamin, M., Aslam, B., Imtiaz, M., Elahi, N. N., Qureshi, T. I., & Sial, G. Z. H. (2022). Human health risk of heavy metal contamination in groundwater and source apportionment. International Journal of Environmental Science and Technology, 19, 7251–7260. https://doi.org/10.1007/s13762-021-03611-9

    Article  CAS  Google Scholar 

  • Jesus, F., Pereira, J. L., Campos, I., Santos, M., Ré, A., Keizer, J., Nogueira, A., Gonçalves, F. J. M., Abrantes, N., & Serpa, D. (2022). A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. Science of the Total Environment., 820, 153282. https://doi.org/10.1016/j.scitotenv.2022.153282

    Article  CAS  Google Scholar 

  • Jiang, Y., Yuan, L., Wen, H., Zhang, Q., Liu, L., & Wu, Y. (2020). Distribution, composition, sources, and potential ecological risks of PAHs in the sediments of the Lanzhou Reach of the Yellow River, China. Bulletin of Environment Contamination and Toxicology, 105, 613–619. https://doi.org/10.1007/s00128-020-02998-4

    Article  CAS  Google Scholar 

  • Jiries, A., Al-Nasir, F., Hijazin, T. J., Al-Alawi, M., El Fels, L., Mayyas, A., Al-Dmour, R., & Al-Madanat, O. Y. (2022). Polycyclic aromatic hydrocarbons in citrus fruit irrigated with fresh water under arid conditions: Concentrations, sources, and risk assessment. Arabian Journal of Chemistry, 15, 104027. https://doi.org/10.1016/j.arabjc.2022.104027

    Article  CAS  Google Scholar 

  • Ju, Y.-R., Chen, C.-F., Wang, M.-H., Chen, C.-W., & Dong, C.-D. (2022). Assessment of polycyclic aromatic hydrocarbons in seafood collected from coastal aquaculture ponds in Taiwan and human health risk assessment. Journal of Hazardous Materials, 421, 126708. https://doi.org/10.1016/j.jhazmat.2021.126708

    Article  CAS  Google Scholar 

  • Juntakut, P., Haacker, E. M. K., Snow, D. D., & Ray, C. (2020). Risk and cost assessment of nitrate contamination in domestic wells. Water, 12, 428. https://doi.org/10.3390/w12020428

    Article  Google Scholar 

  • Karyab, H., Yunesian, M., Nasseri, S., Rastkari, N., Mahvi, A., & Nabizadeh, R. (2016). Carcinogen risk assessment of polycyclic aromatic hydrocarbons in drinking water, using probabilistic approaches. Iranian Journal of Public Health, 45, 1455.

    Google Scholar 

  • Kumar, A., Ambade, B., Sankar, T. K., Sethi, S. S., & Kurwadkar, S. (2020). Source identification and health risk assessment of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Jamshedpur, India. Sustainable Cities and Society, 52, 101801. https://doi.org/10.1016/j.scs.2019.101801

    Article  Google Scholar 

  • Larsen, R. K., & Baker, J. E. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881. https://doi.org/10.1021/es0206184

    Article  CAS  Google Scholar 

  • Lehmann, J., Bossio, D. A., Kögel-Knabner, I., & Rillig, M. C. (2020). The concept and future prospects of soil health. Nature Reviews Earth and Environment, 1, 544–553. https://doi.org/10.1038/s43017-020-0080-8

    Article  Google Scholar 

  • Leipe, T., Kersten, M., Heise, S., Pohl, C., Witt, G., Liehr, G., Zettler, M., & Tauber, F. (2005). Ecotoxicity assessment of natural attenuation effects at a historical dumping site in the western Baltic Sea. Marine Pollution Bulletin, 50, 446–459. https://doi.org/10.1016/j.marpolbul.2004.11.049

    Article  CAS  Google Scholar 

  • Li, R., Cai, J., Li, J., Wang, Z., Pei, P., Zhang, J., & Krebs, P. (2022). Characterizing the long-term occurrence of polycyclic aromatic hydrocarbons and their driving forces in surface waters. Journal of Hazardous Materials, 423, 127065. https://doi.org/10.1016/j.jhazmat.2021.127065

    Article  CAS  Google Scholar 

  • Li, R., Hua, P., Cai, J., Wang, X., Zhu, Y., Huang, Z., Li, P., Wang, Z., Bai, Y., Hu, B. X., Zhang, J., & Krebs, P. (2019). A sixteen-year reduction in the concentrations of aquatic PAHs corresponding to source shifts in the Elbe River, Germany. Journal of Cleaner Production., 223, 631–640. https://doi.org/10.1016/j.jclepro.2019.03.159

    Article  CAS  Google Scholar 

  • Liu, Y., Wang, P., Gojenko, B., Yu, J., Wei, L., Luo, D., & Xiao, T. (2021). A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects. Environmental Pollution., 291, 118209. https://doi.org/10.1016/j.envpol.2021.118209

    Article  CAS  Google Scholar 

  • Lubi, S. P., & Akinluyi, F. O. (2022). Groundwater hydrocarbon contamination spatial pattern in Opuama, Western Niger-Delta, Nigeria. Environmental Earth Sciences, 81, 121. https://doi.org/10.1007/s12665-022-10250-x

    Article  CAS  Google Scholar 

  • Magalhães, K. M., Carreira, R. S., Rosa Filho, J. S., Rocha, P. P., Santana, F. M., Yogui, G. T., & Polycyclic aromatic hydrocarbons (PAHs) in fishery resources affected by the,. (2019). Polycyclic aromatic hydrocarbons (PAHs) in fishery resources affected by the 2019 oil spill in Brazil: Short-term environmental health and seafood safety. Marine Pollution Bulletin, 175(2022), 113334. https://doi.org/10.1016/j.marpolbul.2022.113334

    Article  CAS  Google Scholar 

  • Meng, Y., Liu, X., Lu, S., Zhang, T., Jin, B., Wang, Q., Tang, Z., Liu, Y., Guo, X., Zhou, J., & Xi, B. (2019). A review on occurrence and risk of polycyclic aromatic hydrocarbons (PAHs) in lakes of China. Science of the Total Environment, 651, 2497–2506. https://doi.org/10.1016/j.scitotenv.2018.10.162

    Article  CAS  Google Scholar 

  • Mihankhah, T., Saeedi, M., & Karbassi, A. (2020). Contamination and cancer risk assessment of polycyclic aromatic hydrocarbons (PAHs) in urban dust from different land-uses in the most populated city of Iran. Ecotoxicology and Environmental Safety, 187, 109838. https://doi.org/10.1016/j.ecoenv.2019.109838

    Article  CAS  Google Scholar 

  • Mohammed, A. B., Goran, S. M. A., & Tarafdar, A. (2022). Profiling of seasonal variation in and cancer risk assessment of benzo(a)pyrene and heavy metals in drinking water from Kirkuk city, Iraq. Environmental Science and Pollution Research, 29, 22203–22222. https://doi.org/10.1007/s11356-021-17314-8

    Article  CAS  Google Scholar 

  • Mohammed, A., Iniaghe, P., Abu, T., Bello, M., & Abdulkadir, M. (2020). Source analysis of heavy metals and polycyclic aromatic hydrocarbons from a popular dumpsite, Lagos State, Nigeria. Journal of the Turkish Chemical Society Section a: Chemistry, 7, 489–504. https://doi.org/10.18596/jotcsa.687322

    Article  CAS  Google Scholar 

  • Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment., 696, 133971. https://doi.org/10.1016/j.scitotenv.2019.133971

    Article  CAS  Google Scholar 

  • Na, G., Gao, Y., Li, R., Gao, H., Hou, C., Ye, J., Jin, S., & Zhang, Z. (2020). Occurrence and sources of polycyclic aromatic hydrocarbons in atmosphere and soil from 2013 to 2019 in the Fildes Peninsula, Antarctica. Marine Pollution Bulletin, 156, 111173. https://doi.org/10.1016/j.marpolbul.2020.111173

    Article  CAS  Google Scholar 

  • Naik, R. K., Naik, M. M., D’Costa, P. M., & Shaikh, F. (2019). Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: A potential risk to the marine environment and human health. Marine Pollution Bulletin, 149, 110525. https://doi.org/10.1016/j.marpolbul.2019.110525

    Article  CAS  Google Scholar 

  • Nthunya, L. N., Khumalo, N. P., Verliefde, A. R., Mamba, B. B., & Mhlanga, S. D. (2019). Quantitative analysis of phenols and PAHs in the Nandoni Dam in Limpopo Province, South Africa: A preliminary study for dam water quality management. Physics and Chemistry of the Earth, Parts a/b/c, 112, 228–236. https://doi.org/10.1016/j.pce.2019.02.003

    Article  Google Scholar 

  • Odjegba, E. E., Bankole, A. O., Sadiq, A. Y., Busari, I. O., & Layi-Adigun, B. O. (2021). Rapid assessment of the water chemistry of public water supply in Abeokuta, SouthWest Nigeria. Journal of Applied Sciences and Environmental Management, 25, 689–693. https://doi.org/10.4314/jasem.v25i5.1

    Article  Google Scholar 

  • Ololade, I. A., Arogunrerin, I. A., Oladoja, N. A., Ololade, O. O., & Alabi, A. B. (2021). Concentrations and toxic equivalency of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCB) congeners in groundwater around waste dumpsites in South-West Nigeria. Archives of Environmental Contamination and Toxicology, 80, 134–143. https://doi.org/10.1007/s00244-020-00790-3

    Article  CAS  Google Scholar 

  • Oni, A. A., Babalola, S. O., Adeleye, A. D., Olagunju, T. E., Amama, I. A., Omole, E. O., Adegboye, E. A., & Ohore, O. G. (2022e). Non-carcinogenic and carcinogenic health risks associated with heavy metals and polycyclic aromatic hydrocarbons in well-water samples from an automobile junk market in Ibadan SW-Nigeria. Heliyon, 8, e10688. https://doi.org/10.1016/j.heliyon.2022.e10688

    Article  CAS  Google Scholar 

  • Onydinma, U. P., Aljerf, L., Obike, A., Onah, O. E., & Caleb, N. J. (2021). Evaluation of physicochemical characteristics and health risk of polycyclic aromatic hydrocarbons in borehole waters around automobile workshops in Southeastern Nigeria. Groundwater for Sustainable Development, 14, 100615. https://doi.org/10.1016/j.gsd.2021.100615

    Article  Google Scholar 

  • Onyegeme-Okerenta, B. M., West, O. L., & Chuku, L. C. (2022e). Concentration, dietary exposure and human health risk assessment of total petroleum and polycyclic aromatic hydrocarbons in seafood from coastal communities in Rivers State, Nigeria. Scientific African, 16, e01186. https://doi.org/10.1016/j.sciaf.2022.e01186

    Article  CAS  Google Scholar 

  • Oshima, N., Ishida, R., Kishimoto, S., Beebe, K., Brender, J. R., Yamamoto, K., Urban, D., Rai, G., Johnson, M. S., Benavides, G., Squadrito, G. L., Crooks, D., Jackson, J., Joshi, A., Mott, B. T., Shrimp, J. H., Moses, M. A., Lee, M.-J., Yuno, A., … Neckers, L. M. (2020). Dynamic imaging of LDH inhibition in tumors reveals rapid in vivo metabolic rewiring and vulnerability to combination therapy. Cell Reports, 30, 1798-1810.e4. https://doi.org/10.1016/j.celrep.2020.01.039

    Article  CAS  Google Scholar 

  • Owusu, P. A., Asumadu-Sarkodie, S., & Ameyo, P. (2016). A review of Ghana’s water resource management and the future prospect. Cogent Engineering, 3, 1164275. https://doi.org/10.1080/23311916.2016.1164275

    Article  Google Scholar 

  • Pichler, N., Maria de Souza, F., Ferreira dos Santos, V., & Martins, C. C. (2021). Polycyclic aromatic hydrocarbons (PAHs) in sediments of the amazon coast: Evidence for localized sources in contrast to massive regional biomass burning. Environmental Pollution, 268, 115958. https://doi.org/10.1016/j.envpol.2020.115958

    Article  CAS  Google Scholar 

  • Qin, N., He, W., Liu, W., Kong, X., Xu, F., & Giesy, J. P. (2020). Tissue distribution, bioaccumulation, and carcinogenic risk of polycyclic aromatic hydrocarbons in aquatic organisms from Lake Chaohu, China. Science of the Total Environment, 749, 141577. https://doi.org/10.1016/j.scitotenv.2020.141577

    Article  CAS  Google Scholar 

  • Qu, Y., Gong, Y., Ma, J., Wei, H., Liu, Q., Liu, L., Wu, H., Yang, S., & Chen, Y. (2020). Potential sources, influencing factors, and health risks of polycyclic aromatic hydrocarbons (PAHs) in the surface soil of urban parks in Beijing, China. Environmental Pollution, 260, 114016. https://doi.org/10.1016/j.envpol.2020.114016

    Article  CAS  Google Scholar 

  • Rantanen, P.-L., Keinänen-Toivola, M. M., Ahonen, M., González-Martínez, A., Mellin, I., & Vahala, R. (2020). Decreased natural organic matter in water distribution decreases nitrite formation in non-disinfected conditions, via enhanced nitrite oxidation. Water Research X, 9, 100069. https://doi.org/10.1016/j.wroa.2020.100069

    Article  CAS  Google Scholar 

  • Reddy, D. H., & Lee, S.-M. (2012). Water pollution and treatment technologies. Journal of Environmental & Analytical Toxicology. https://doi.org/10.4172/2161-0525.1000e103

    Article  Google Scholar 

  • Sabour, M. R., Besharati, M., Dezvareh, G. A., Hajbabaie, M., & Akbari, M. (2022). Application of artificial neural network with the back-propagation algorithm for estimating the amount of polycyclic aromatic hydrocarbons in Tehran Oil Refinery, Iran. Environmental Nanotechnology, Monitoring & Management, 18, 100677. https://doi.org/10.1016/j.enmm.2022.100677

    Article  CAS  Google Scholar 

  • Sheikh Fakhradini, S., Moore, F., Keshavarzi, B., & Lahijanzadeh, A. (2019). Polycyclic aromatic hydrocarbons (PAHs) in water and sediment of Hoor Al-Azim wetland, Iran: A focus on source apportionment, environmental risk assessment, and sediment-water partitioning. Environmental Monitoring and Assessment, 191, 233. https://doi.org/10.1007/s10661-019-7360-0

    Article  CAS  Google Scholar 

  • Siemering, G. S., & Thiboldeaux, R. (2021). Background concentration, risk assessment and regulatory threshold development: Polycyclic aromatic hydrocarbons (PAH) in Milwaukee Wisconsin surface soils. Environmental Pollution, 268, 115772. https://doi.org/10.1016/j.envpol.2020.115772

    Article  CAS  Google Scholar 

  • Škrbić, B. D., Kadokami, K., & Antić, I. (2018). Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment. Environmental Research, 166, 130–140. https://doi.org/10.1016/j.envres.2018.05.034

    Article  CAS  Google Scholar 

  • Tongo, I., Ogbeide, O., & Ezemonye, L. (2017). Human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in smoked fish species from markets in Southern Nigeria. Toxicology Reports, 4, 55–61. https://doi.org/10.1016/j.toxrep.2016.12.006

    Article  CAS  Google Scholar 

  • Wang, C., Zhou, S., Tang, J., Li, Y., Li, H., Du, J., Xu, S., Zhou, Q., Xu, Z., & Wu, S. (2021). Elemental carbon components and PAHs in soils from different areas of the Yangtze River Delta region, China and their relationship. CATENA, 199, 105086. https://doi.org/10.1016/j.catena.2020.105086

    Article  CAS  Google Scholar 

  • Wu, Z., He, C., Lyu, H., Ma, X., Dou, X., Man, Q., Ren, G., Liu, Y., & Zhang, Y. (2022). Polycyclic aromatic hydrocarbons and polybrominated diphenyl ethers in urban road dust from Tianjin, China: pollution characteristics, sources and health risk assessment. Sustainable Cities and Society, 81, 103847. https://doi.org/10.1016/j.scs.2022.103847

    Article  Google Scholar 

  • Yu, Y., Yu, Z., Wang, Z., Lin, B., Li, L., Chen, X., Zhu, X., Xiang, M., & Ma, R. (2018). Polycyclic aromatic hydrocarbons (PAHs) in multi-phases from the drinking water source area of the Pearl River Delta (PRD) in South China: Distribution, source apportionment, and risk assessment. Environmental Science and Pollution Research, 25, 12557–12569. https://doi.org/10.1007/s11356-018-1421-8

    Article  CAS  Google Scholar 

  • Yurdakul, S., Çelik, I., Çelen, M., Öztürk, F., & Cetin, B. (2019). Levels, temporal/spatial variations and sources of PAHs and PCBs in soil of a highly industrialized area. Atmospheric Pollution Research, 10, 1227–1238. https://doi.org/10.1016/j.apr.2019.02.006

    Article  CAS  Google Scholar 

  • Zhang, H., Wang, J., Bao, H., Li, J., & Wu, F. (2020b). Polycyclic aromatic hydrocarbons in urban soils of Zhengzhou City, China: Occurrence, source and human health evaluation. Bulletin of Environment Contamination and Toxicology, 105, 446–452. https://doi.org/10.1007/s00128-020-02982-y

    Article  CAS  Google Scholar 

  • Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O., Parikh, S. J., & Ok, Y. S. (2020a). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303. https://doi.org/10.1016/j.watres.2020.116303

    Article  CAS  Google Scholar 

  • Zhang, S., Li, H., He, R., Deng, W., Ma, S., Zhang, X., Li, G., & An, T. (2022c). Spatial distribution, source identification, and human health risk assessment of PAHs and their derivatives in soils nearby the coke plants. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2022.160588

    Article  Google Scholar 

  • Zhang, X., Wang, X., Zhao, X., Tang, Z., Zhao, T., Teng, M., Liang, W., Wang, J., & Niu, L. (2022b). Using deterministic and probabilistic approaches to assess the human health risk assessment of 7 polycyclic aromatic hydrocarbons. Journal of Cleaner Production, 331, 129811. https://doi.org/10.1016/j.jclepro.2021.129811

    Article  CAS  Google Scholar 

  • Zhang, Y., Yin, J., Qv, Z., Chen, H., Li, H., Zhang, Y., & Zhu, L. (2022a). Deriving freshwater sediment quality guidelines of polycyclic aromatic hydrocarbons using method of species sensitivity distribution and application for risk assessment. Water Research, 225, 119139. https://doi.org/10.1016/j.watres.2022.119139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I would like to thank the laboratory staff at the Federal University of Dutsin-Ma in Dutsin-Ma and Ahmadu Bello University in Zaria for their invaluable assistance during the laboratory work. I also thank Ama-Iruobe Okanima Noble for her assistance in the field work and Uakheme Precious Areguamen for his assistance during the write-up of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study. OIA, NNC, CEG, and OJO were involved in the design of the manuscript, the choice of methodology, and the quality control of the analysis. OIA designed the map of the sampling area using GIS and participated in the field and laboratory work. OIA, NNC, CEG, AE, and OJO participated in the statistical, ecological, and human health risk analyses. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Omole Isaac Areguamen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Areguamen, O.I., Calvin, N.N., Gimba, C.E. et al. Seasonal assessment of the distribution, source apportionment, and risk of water-contaminated polycyclic aromatic hydrocarbons (PAHs). Environ Geochem Health 45, 5415–5439 (2023). https://doi.org/10.1007/s10653-023-01542-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01542-7

Keywords

Navigation