Skip to main content

Advertisement

Log in

Polycyclic aromatic hydrocarbons loads and potential risks in freshwater ecosystem of the Ikpa River Basin, Niger Delta—Nigeria

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, the levels of 16 USEPA-prioritized polycyclic aromatic hydrocarbons (PAHs) were quantified in various environmental matrices in Ikpa River Basin and nearby dumpsites using gas chromatography–mass spectrometry (GC-MS). The levels of the contaminants were further subjected to models to estimate possible sources and potential risks. The results obtained revealed that nearby dumpsites could be the major source of contamination of the Ikpa River Basin. The total sum of PAHs in water and sediment samples gave 926.6 μg/l and 1099.7 μg/kg, respectively. Higher concentrations, 3025.8 μg/kg, 3645.7 μg/kg, and 2457.2 μg/l, were recorded for nearby municipal dumpsite soil, hospital dumpsite soil, and landfill leachates, respectively. Hierarchical cluster analysis (HCA) and PAH molecular diagnostic ratios (MDRs) suggest that PAH loading in the river basin were mostly of pyrogenic origin. The risk assessment indicated that exposure to PAHs through dermal contact with sediments was most significant than oral ingestion of water and children were the most vulnerable group. Non-cancer (toxic) risks due to exposure to PAHs by oral ingestion of water from Ikpa River were within acceptable limits as the calculated hazard quotients (HQs) and hazard indexes (HIs) were below unity, suggesting negligible or no toxic risk. However, toxic risks through dermal contact with sediments reached unacceptable limits as HI values exceeded unity for all sample stations. Estimated cancer risks due to oral ingestion of water reached the USEPA minimum risk level (3.14 × 10−5) requiring public notification while risks due to dermal adsorption of PAHs from the sediments reached levels (2.10 × 10−1) requiring remediation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ana, G. R. E. E., Sridhar, M. K. C., & Bamboye, E. A. (2009). Environmental risk factors and health outcomes in selected communities of the Niger Delta area, Nigeria. Perspectives in Public Health, 129(4), 183–191.

    Article  Google Scholar 

  • Anyakora, C., Ogbeche, A., Palmer, P., & Coker, H. (2005). Determination of polynuclear aromatic hydrocarbons in marine samples of Siokolo Fishing Settlement. Journal of Chromatography A, 1073, 323–330.

    Article  CAS  Google Scholar 

  • Arukwe, A., Eggen, T., & Moder, M. (2012). Solid waste deposits as a significant source of contaminants of emerging concern to the aquatic and terrestrial environments –a developing country case study from Owerri, Nigeria. Science of the Total Environment, 438, 94–102.

    Article  CAS  Google Scholar 

  • Benson, N. U., Essien, J. P., Asuquo, F. E., & Eritobor, A. L. (2014). Occurrence and distribution of polycyclic aromatic hydrocarbons in surface microlayer and subsurface seawater of Lagos Lagoon, Nigeria. Environmental Monitoring and Assessment, 186(9), 5519–5529.

    Article  CAS  Google Scholar 

  • Castano-Vinyals, G., D’Errico, A., Malats, N., & Kogevinas, M. (2004). Biomarkers of exposures to polycyclic aromatic hydrocarbons from environmental air pollution. Occupational and Environmental Medicine, 61, 12. doi:10.1136/oem.2003.008375.

    Article  Google Scholar 

  • Chen, B., Xuan, X., Zhu, L., Wang, J., Gao, Y., Yang, K., Shen, X., & Lou, B. (2004). Distribution of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Research, 38, 3558–3568.

    Article  CAS  Google Scholar 

  • Collins, J. F., Brown, J. P., Alexeeff, G. V., & Salmon, A. G. (1998). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory Toxicology and Pharmacology, 28, 45–54.

    Article  CAS  Google Scholar 

  • Colombo, J. C., Cappelletti, N., Lasci, J., Migoya, M. C., Speranza, E., & Skorupka, C. N. (2006). Sources, vertical fluxes, and equivalent toxicity of aromatic hydrocarbons in coastal sediments of the Rio de la Plata Estuary, Argentina. Environmental Science & Technology, 40(3), 734–740.

    Article  CAS  Google Scholar 

  • Dennis, E. I., Essien, R. A., & Udoh, U. H. (2013). Dynamics of heavy metal runoff from farmland around Ikpa River Basin, Nigeria. Applied Ecology and Environmental Sciences, 1(6), 143–148.

    Article  CAS  Google Scholar 

  • Essien, J. P., Eduok, S. I., & Olajire, A. A. (2010). Distribution and ecotoxicological significance of polycyclic aromatic hydrocarbons in sediments from Iko River Estuary Mangrove Ecosystem. Environmental Monitoring and Assessment, 176, 99–107.

    Article  CAS  Google Scholar 

  • Falahudin, D., Munawir, K., Arifin, Z., & Wagey, G. A. (2012). Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in coastal waters of the Timor Sea. Coastal Marine Science, 35(1), 112–121.

    Google Scholar 

  • Farooq, S., Eqani, S., Malikm, R., Katsoyiannis, A., Zhang, G., Zhang, Y., Li, J., Xiang, L., Jones, K., & Shinwari, Z. (2011). Occurrence, finger printing and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the Chenab River, Pakistan. Journal of Environmental Monitoring, 13, 3207–3215.

    Article  CAS  Google Scholar 

  • Inam, E., Owhoke, E., & Essien, J. (2014). Human carcinogenic risk assessment of polycyclic aromatic hydrocarbons in freshwater samples from Ogba/Egbema/Ndoni communities in Rivers State, Nigeria. Journal of Chemical Society of Nigeria, 39(2), 15–22.

    Google Scholar 

  • Katsoyiannis, A., & Breivik, K. (2014). Model-based evaluation of the use of polycyclic aromatic hydrocarbons molecular diagnostic ratios as a source identification tool. Environmental Pollution, 184, 488–494.

    Article  CAS  Google Scholar 

  • Katsoyiannis, A., Sweetman, A. J., & Jones, K. C. (2011). PAH molecular diagnostic ratios applied to atmospheric sources: a critical evaluation using to decades of source inventory and air concentration data from the UK. Environmental Science & Technology, 45, 8897–8906.

    Article  CAS  Google Scholar 

  • Lang, Y., Wang, N., Gao, H., & Bai, J. (2012). Distribution and risk assessment of polycyclic aromatic hydrocarbons (PAHs) from Liaohe estuarine wetland soils. Environmental Monitoring and Assessment, 184, 5545–5552.

    Article  CAS  Google Scholar 

  • Luca, G., Furesi, A., Leardi, R., Micera, G., Panzanelli, A., Piu, P. C., & Sanna, G. (2004). Polycyclic aromatic hydrocarbons assessment in the sediments of the Porto Torres Harbor (Northern Sardinia, Italy). Marine Chemistry, 86, 15–32.

    Article  CAS  Google Scholar 

  • Ma, Y., Cheng, J., Jiao, F., Duo, K., Rong, Z., Li, M. & Wang, W. (2008). Distribution, sources, and potential risk of polycyclic aromatic hydrocarbons (PAHs) in drinking water resources from Henan Province in Middle of China. Environmental Monitoring and Assessment, 146, 127–138.

  • Mai, B., Qi, S., Zeng, E. Y., Yang, Q., Zhang, G., Fu, J., Sheng, G., Peng, P., & Wang, Z. (2003). Distribution of polycyclic aromatic hydrocarbons in the coastal region of macao, china: assessment of input sources and transport pathways using compositional analysis. Environmental Science & Technology, 37(21), 4855–4863.

    Article  CAS  Google Scholar 

  • Manoli, E., & Samara, C. (1999). Polycyclic aromatic hydrocarbons in natural waters: sources, occurrence and analysis. Trends in Analytical Chemistry, 18(6), 417–427.

    Article  CAS  Google Scholar 

  • McGroddy, S. E., & Farrington, J. W. (1995). Sediment porewater partitioning of polycyclic aromatic hydrocarbons in three cores from Boston Habor, Massachusetts. Environmental Science & Technology, 29(6), 1542–1550.

    Article  CAS  Google Scholar 

  • Mirsadeghi, S. A., Zakaria, M. P., Yap, C. K., & Shahbazi, A. (2011). Risk assessment for daily intake of polycyclic aromatic hydrocarbons from the ingestion of cockle (Anadara granosa) and exposure to contaminated water and sediments along the west coast of Peninsular Malaysia. Journal of Environmental Sciences, 23(2), 336–345.

    Article  CAS  Google Scholar 

  • Nagy, A. S., Simon, G., Szabo, J., & Vass, I. (2013). Polycyclic aromatic hydrocarbons in surface water and bed sediments of the Hungarian Upper Section of the Danube River. Environmental Monitoring and Assessment, 185, 4617–4631.

    Article  CAS  Google Scholar 

  • Neff, J. M., Stout, S. A., & Gunstert, D. G. (2005). Ecological risk assessment of polycyclic aromatic hydrocarbons in sediments: indentifying sources and ecological hazard. Integrated Environmental Assessment and Management, 1(1), 22–33.

    Article  CAS  Google Scholar 

  • Nisbet, I. C., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300.

    Article  CAS  Google Scholar 

  • Oman, C., & Hynning, P. (1993). Identification of organic compounds in municipal landfill leachates. Environmental Pollution, 80, 265–271.

    Article  CAS  Google Scholar 

  • Rojo-Nieto, E., Sales, D., & Perales, J. A. (2013). Sources, transport and fate of PAHs in sediments and superficial water of a chronically polluted semi-enclosed body of seawater: linking of compartments. Environmental Science: Processes & Impacts, 15, 986–995.

    CAS  Google Scholar 

  • Sojinu, O. S. S., Wang, J.-Z., Sonibare, O., & Zeng, Y. (2010). Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the Niger Delta, Nigeria. Journal of Hazardous Materials, 174, 641–647.

    Article  CAS  Google Scholar 

  • Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5, 169–195.

    Article  CAS  Google Scholar 

  • Stout, S. A., Magar, V. S., Uhler, R. M., Ickes, J., Abbott, J., & Brenner, R. (2001). Characterization of naturally occurring and anthropogenic PAHs in urban sediments: Wycoff/Eagle Harbor Superfund site. Environmental Forensics, 2(4), 287–300.

    CAS  Google Scholar 

  • Tsai, P. J., Shieh, H. Y., Lee, W. J., & Lai, S. O. (2001). Health-Risk Assessment for Workers Exposed to Polycyclic Aromatic Hydrocarbons (PAHs) in a Carbon Black Manufacturing Industry. Science of the Total Environment, 278, 137–150.

    Article  CAS  Google Scholar 

  • Udosen, C. (2008). Gully erosion in Ikpa River Basin: a threshold phenomenon (pp. 63–65). Lagos, Nigeria: Time Communications.

    Google Scholar 

  • Udosen, E. D., & Essien, J. P. (2001). Levels of lead, copper and iron in fish from some streams within a ravine in Uyo Municipality, Nigeria. Journal of Science, Engineering and Technology, 8(2), 3312–3321.

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (1989). Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part A). Interim Final. Office of Emergency and Remedial Response, U.S.EPA, Washington, D. C. 20450. EPA/540/1-89/00

  • Wakeman, S. G., Schaffner, C., & Giger, W. (1980). Polycyclic aromatic hydrocarbons in recent lake sediments —II. Compounds derived from biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta, 44, 415–429.

    Article  Google Scholar 

  • Wang, Z., Chen, J., Yang, P., Qiao, X., & Tian, F. (2007). Polycyclic aromatic hydrocarbons in dalian soils: distribution and toxicity assessment. Journal of Environmental Monitoring, 9, 199–204.

    Article  CAS  Google Scholar 

  • WHO (World Health Organisation). (2008). Guidelines for drinking water quality (pp. 428–430). Geneva: WHO.

    Google Scholar 

  • Williams, E. S., Mahler, B. J., & Van Metre, P. C. (2013). Cancer risk from incidental ingestion exposures to PAHs associated with coal-tar-sealed pavement. Environmental Science & Technology, 47, 1101–1109.

    Article  CAS  Google Scholar 

  • Witt, G. (1995). Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, 31, 237–248.

    Article  CAS  Google Scholar 

  • Wu, B., Zhang, Y., Zhang, X. X., & Cheng, S. P. (2011). Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of china: quantitative analysis based on published data. Science of the Total Environment, 410, 112–118.

    Article  CAS  Google Scholar 

  • Yu, G., Zhang, Z., Yang, G., Zheng, W., Xu, L., & Cai, Z. (2014). Polycyclic aromatic hydrocarbons in urban soils of Hangzhou: status, distribution, sources, and potential risk. Environmental Monitoring and Assessment, 186, 2775–2784.

    Article  CAS  Google Scholar 

  • Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., & Kumata, H. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environmental Science & Technology, 36(9), 1907–1918.

    Article  CAS  Google Scholar 

  • Zeng, E. Y., & Vista, C. L. (1997). Organic pollutants in the coastal environments of San Diego, California. 1. Source Identification and Assessment by Compositional Indices of Polycyclic Aromatic Hydrocarbons. Environmental Toxicology and Chemistry, 16(2), 179–188.

    Article  CAS  Google Scholar 

  • Zhang, W., Wei, C., Feng, C., Yu, Z., Ren, M., Yan, B., Peng, P., & Fu, J. (2011). Distribution and health risk assessment of polycyclic aromatic hydrocarbons in soils at a coking plant. Journal of Environmental Monitoring, 13, 3429–3436.

    Article  CAS  Google Scholar 

  • Zhang, Y., Liu, M., Chen, H., & Hou, G. (2014). Source identification of polycyclic aromatic hydrocarbons in different ecological components of the Qinkepao Wetland in Northeast China. Ecotoxicology and Environmental Safety, 102, 160–167.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ministry of Science and Technology in South Korea through the Institute of Science and Technology for sustainability (UNU & GIST Joint Programme) in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edu Inam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inam, E., Offiong, NA., Essien, J. et al. Polycyclic aromatic hydrocarbons loads and potential risks in freshwater ecosystem of the Ikpa River Basin, Niger Delta—Nigeria. Environ Monit Assess 188, 49 (2016). https://doi.org/10.1007/s10661-015-5038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5038-9

Keywords

Navigation