Skip to main content
Log in

Chiral pesticides levels in peri-urban area near Yangtze River and their correlations with water quality and microbial communities

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Pesticides are considered to be the second-largest non-point source pollution in water. Our research assayed the river network of typical agricultural areas in the middle and lower Yangtze River as the study area. Pesticides residues in aquatic environment were determined by QuEChERS, combined with high-performance liquid chromatography tandem mass spectrometry, or gas chromatograph-mass spectrometer. At chiral pesticides’ levels, we detected pesticides contents in water, classified and counted the types of pesticides, and analyzed their environmental risk assessment. Furthermore, potential correlations between chiral pesticides concentrations and water quality indicators were assayed. Additionally, we explored their relations with microbial communities at species levels. Enantiomers of Diclofop-methyl, Ethiprole, Difenoconazole and Epoxiconazole were enantioselectively distributed. More interestingly, due to various chiral environment of the sampling site, the enantiomers of Tebuconazole Acetochlor, Glufosinate ammonium and Bifenthrin had completely different distributions at different sites. Based on that, the chiral pesticides Diclofop-methyl, Bifenthrin, Ethiprole, Tebuconazole and Difenoconazole are enantioselective to the risk of aquatic environment. Generally, enantiomeric selectivity had high positive correlations with total nitrogen and phosphorus. Then we found that chiral fate behavior of Tebuconazole and Paichongding in water might be affected by prokaryotes. In addition, the chiral behavior of Diclofop-methyl, Propiconazole, Difenoconazole, and Tebuconazole isomers in water might be negatively affected by eukaryotes. That research helped us to comprehensively understand the impact of non-point source pollution of chiral pesticides in aquatic environment and provided basic data support for developing biological and water quality indicators for monitoring pollution in aquatic environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali, N., Khan, S., Li, Y., Zheng, N., & Yao, H. (2019a). Influence of biochars on the accessibility of organochlorine pesticides and microbial community in contaminated soils. Science of the Total Environment, 647, 551–560.

    Article  CAS  Google Scholar 

  • Ali, N., Khan, S., Yao, H., & Wang, J. (2019b). Biochars reduced the bioaccessibility and (bio) uptake of organochlorine pesticides and changed the microbial community dynamics in agricultural soils. Chemosphere, 224, 805–815.

    Article  CAS  Google Scholar 

  • Anderson, J., Dubetz, C., & Palace, V. (2015). Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects. Science of the Total Environment, 505, 409–422.

    Article  CAS  Google Scholar 

  • Arenas M, Martín J, Santos J L, Aparicio I, Alonso E (2021) Enantioselective behavior of environmental chiral pollutants: A comprehensive review. Critical Reviews in Environmental Science Technology: 1–40.

  • Brown R M, Mcclelland N I, Deininger R A, Tozer R G (1970). A water quality index-do we dare. Water Sewage Works, 117(10).

  • Buerge, I. J., Baechli, A., Kasteel, R., Portmann, R., Lopez-Cabeza, R., Schwab, L. F., & Poiger, T. (2019). Behavior of the chiral herbicide imazamox in soils: PH-dependent, enantioselective degradation, formation and degradation of several chiral metabolites. Environmental Science Technology, 53(10), 5725–5732.

    Article  CAS  Google Scholar 

  • Cai, X., Liu, W., & Sheng, G. (2008). Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures. Journal of Agricultural Food Chemistry, 56(6), 2139–2146.

    Article  CAS  Google Scholar 

  • Camacho-Muñoz, D., Petrie, B., Lopardo, L., Proctor, K., Rice, J., Youdan, J., Barden, R., & Kasprzyk-Hordern, B. (2019). Stereoisomeric profiling of chiral pharmaceutically active compounds in wastewaters and the receiving environment–A catchment-scale and a laboratory study. Environment International, 127, 558–572.

    Article  Google Scholar 

  • Chen, D., Wu, S., Xue, H., & Jiang, J. (2020). Stereoselective catabolism of compounds by microorganisms: Catabolic pathway, molecular mechanism and potential application. International Biodeterioration Biodegradation, 146, 104822.

    Article  CAS  Google Scholar 

  • Copeland, A., & Lytle, D. A. (2014). Measuring the oxidation–reduction potential of important oxidants in drinking water. Journal‐american Water Works Association, 106(1), E10–E20.

    Article  Google Scholar 

  • Fishar M, Ali M (2005). Accumulation of trace metals in some benthic invertebrate and fish species revelant to their concentration in water and sediment of lake Qarun, Egypt.

  • Flipo, N., Jeannee, N., Poulin, M., Even, S., & Ledoux, E. (2007). Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling. Environmental Pollution, 146(1), 241–256.

    Article  CAS  Google Scholar 

  • Guo, J., Zhao, L., Lu, W., Jia, H., Wang, L., Liu, X., & Sun, Y. (2015). Effect of historical residual hexachlorocyclohexanes and dichlorodiphenyltrichloroethane on bacterial communities in sediment core collected from an estuary in northeastern China by next-generation sequencing. Marine Pollution Bulletin, 93(1–2), 68–74.

    Article  CAS  Google Scholar 

  • Gao, J., Wang, F., Wang, P., Jiang, W., Zhang, Z., Liu, D., & Zhou, Z. (2019). Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against chlorella pyrenoidosa. Environmental Pollution, 244, 757–765.

    Article  CAS  Google Scholar 

  • Gao, J., Wang, F., Jiang, W., Miao, J., Wang, P., Zhou, Z., & Liu, D. (2020). A full evaluation of chiral phenylpyrazole pesticide flufiprole and the metabolites to non-target organism in paddy field. Environmental Pollution, 264, 114808.

    Article  CAS  Google Scholar 

  • Halling-Sørensen, B., Lützhøft, H.-C.H., Andersen, H. R., & Ingerslev, F. (2000). Environmental risk assessment of antibiotics comparison of mecillinam trimethoprim and ciprofloxacin. Journal of Antimicrobial Chemotherapy, 46(suppl1), 53–58.

    Article  Google Scholar 

  • Hamilton D, Ambrus A, Dieterle R, Felsot A, Harris C, Holland P, Katayama A, Kurihara N, Linders J, Unsworth JJP, Chemistry A (2003). Regulatory limits for pesticide residues in water (IUPAC technical report). 75(8): 1123–1155

  • Huang, J., Chen, D., & Jiang, J. (2020). Preferential catabolism of the (S)-enantiomer of the herbicide napropamide mediated by the enantioselective amidohydrolase SnaH and the dioxygenase Snpd in Sphingobium sp strain B2. Environmental Microbiology, 22(1), 286–296.

    Article  CAS  Google Scholar 

  • Jiao, S., Chen, W., Wang, E., Wang, J., Liu, Z., Li, Y., & Wei, G. (2016). Microbial succession in response to pollutants in batch-enrichment culture. Scientific Reports, 6(1), 1–11.

    Article  Google Scholar 

  • Jing-Nie, Di, Ouyang, Xiao-Kun, Wei-Jian, Wang, Yang-Guang, Yang, Li-Ye (2016). Chiral separation and enantioselective degradation of trichlorfon enantiomers in mariculture pond water. Analytical Methods, 8(15), 3196-3203.

  • Kaziem, A. E., Gao, B., Li, L., Zhang, Z., He, Z., Wen, Y., & Wang, M.-H. (2020). Enantioselective bioactivity, toxicity, and degradation in different environmental mediums of chiral fungicide epoxiconazole. Journal of Hazardous Materials, 386, 121951.

    Article  CAS  Google Scholar 

  • Kaziem, A. E., He, Z., Li, L., Wen, Y., Wang, Z., Gao, Y., & Wang, M. (2021). Changes in soil and rat gut microbial diversity after long-term exposure to the chiral fungicide epoxiconazole. Chemosphere, 272, 129618.

    Article  CAS  Google Scholar 

  • Khorram, M. S., Zhang, Q., Lin, D., Zheng, Y., Fang, H., & Yu, Y. (2016). Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences, 44, 269–279.

    Article  Google Scholar 

  • Lari, S. Z., Khan, N. A., Gandhi, K. N., Meshram, T. S., & Thacker, N. P. (2014). Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. Journal of Environmental Health Science Engineering, 12(1), 1–7.

    Article  Google Scholar 

  • Li, M., Xu, K., Watanabe, M., & Chen, Z. (2007). Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem. Estuarine, Coastal Shelf Science, 71(1–2), 3–12.

    Article  Google Scholar 

  • Li, D., Yang, M., Li, Z., Qi, R., He, J., & Liu, H. (2010). Change of bacterial communities in sediments along Songhua River in Northeastern China after a nitrobenzene pollution event. Fems Microbiology Ecology, 3, 494–503.

    Google Scholar 

  • Li, Y., Dong, F., Liu, X., Xu, J., Han, Y., & Zheng, Y. (2014). Chiral fungicide triadimefon and triadimenol: Stereoselective transformation in greenhouse crops and soil, and toxicity to Daphnia magna. Journal of Hazardous Materials, 265, 115–123.

    Article  CAS  Google Scholar 

  • Li, X., Xu, Y., Li, M., Ji, R., Dolf, R., & Gu, X. (2021). Water quality analysis of the Yangtze and the Rhine River: A comparative study based on monitoring data from 2007 to 2018. Bulletin of Environmental Contamination Toxicology, 106(5), 825–831.

    Article  CAS  Google Scholar 

  • Lv, T., Carvalho, P. N., Casas, M. E., Bollmann, U. E., Arias, C. A., Brix, H., & Bester, K. (2017a). Enantioselective uptake, translocation and degradation of the chiral pesticides tebuconazole and imazalil by Phragmites australis. Environmental Pollution, 229, 362–370.

    Article  CAS  Google Scholar 

  • Lv, T., Zhang, Y., Carvalho, P. N., Zhang, L., Button, M., Arias, C. A., Weber, K. P., & Brix, H. (2017b). Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering, 98, 378–387.

    Article  Google Scholar 

  • Lv, Y., Xiao, K., Yang, J., Zhu, Y., Pei, K., Yu, W., Tao, S., Wang, H., Liang, S., & Hou, H. (2019). Correlation between oxidation-reduction potential values and sludge dewaterability during pre-oxidation. Water Research, 155, 96–105.

    Article  CAS  Google Scholar 

  • Matamoros, V., Uggetti, E., Garcia, J., & Bayona, J. M. (2016). Assessment of the mechanisms involved in the removal of emerging contaminants by microalgae from wastewater: A laboratory scale study. Journal of Hazardous Materials, 301, 197–205.

    Article  CAS  Google Scholar 

  • Müller B, Berg M, Pernet‐Coudrier B, Qi W, Liu H (2012) The geochemistry of the Yangtze River: Seasonality of concentrations and temporal trends of chemical loads. Global Biogeochemical Cycles, 26(2).

  • Muturi, E. J., Donthu, R. K., Fields, C. J., Moise, I. K., & Kim, C.-H. (2017). Effect of pesticides on microbial communities in container aquatic habitats. Scientific Reports, 7(1), 1–10.

    Article  Google Scholar 

  • Ouyang, W., Cai, G., Huang, W., & Hao, F. (2016). Temporal–spatial loss of diffuse pesticide and potential risks for water quality in China. Science of the Total Environment, 541, 551–558.

    Article  CAS  Google Scholar 

  • Palma, P., Köck-Schulmeyer, M., Alvarenga, P., Ledo, L., Barbosa, I., De Alda, M. L., & Barceló, D. (2014). Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal). Science of the Total Environment, 488, 208–219.

    Article  Google Scholar 

  • Parmar, T. K., Rawtani, D., & Agrawal, Y. (2016). Bioindicators: The natural indicator of environmental pollution. Frontiers in Life Science, 9(2), 110–118.

    Article  CAS  Google Scholar 

  • Pizarro, H., Vera, M. S., Vinocur, A., Pérez, G., Ferraro, M., Helman, R. M., & Dos Santos, A. M. (2016). Glyphosate input modifies microbial community structure in clear and turbid freshwater systems. Environmental Science Pollution Research, 23(6), 5143–5153.

    Article  CAS  Google Scholar 

  • Qi, W., Müller, B., Pernet-Coudrier, B., Singer, H., Liu, H., Qu, J., & Berg, M. (2014). Organic micropollutants in the Yangtze River: Seasonal occurrence and annual loads. Science of the Total Environment, 472, 789–799.

    Article  CAS  Google Scholar 

  • Qu, H., Ma, R.-X., Liu, D.-H., Gao, J., Wang, F., Zhou, Z.-Q., & Wang, P. (2016). Environmental behavior of the chiral insecticide fipronil: Enantioselective toxicity, distribution and transformation in aquatic ecosystem. Water Research, 105, 138–146.

    Article  CAS  Google Scholar 

  • Rice, J., Proctor, K., Lopardo, L., Evans, S., & Kasprzyk-Hordern, B. (2018). Stereochemistry of ephedrine and its environmental significance: Exposure and effects directed approach. Journal of Hazardous Materials, 348, 39–46.

    Article  CAS  Google Scholar 

  • Ruan, Y., Wu, R., Lam, J. C. W., Zhang, K., & Lam, P. K. S. (2019). Seasonal occurrence and fate of chiral pharmaceuticals in different sewage treatment systems in Hong Kong: Mass balance, enantiomeric profiling, and risk assessment. Water Research, 149, 607–616.

    Article  CAS  Google Scholar 

  • Sanganyado, E., Lu, Z., Fu, Q., Schlenk, D., & Gan, J. (2017). Chiral pharmaceuticals: A review on their environmental occurrence and fate processes. Water Research, 124, 527–542.

    Article  CAS  Google Scholar 

  • Schreiner, V. C., Moritz, L., Stefan, K., Eduard, S., Andreas, S., Bernadette, V., Birgit, B., & P. B K, Mirela C, P. S H, Juliane H, B. S R,. (2021). Paradise lost? Pesticide pollution in a european region with considerable amount of traditional agriculture. Water Research, 188, 116528.

    Article  CAS  Google Scholar 

  • Sekhon, B. S. (2009). Chiral pesticides. Journal of Pesticide Science, 34(1), 1–12.

    Article  CAS  Google Scholar 

  • Shi, L., Zhang, P., He, Y., Zeng, F., Xu, J., & He, L. (2021). Enantioselective effects of cyflumetofen on microbial community and related nitrogen cycle gene function in acid-soil. Science of the Total Environment, 771, 144831.

    Article  CAS  Google Scholar 

  • Song, Q., Zhang, Y., Yan, L., Wang, J., Lu, C., Zhang, Q., & Zhao, M. (2017). Risk assessment of the endocrine-disrupting effects of nine chiral pesticides. Journal of Hazardous Materials, 338, 57–65.

    Article  CAS  Google Scholar 

  • Sulimma, L., Bullach, A., Kusari, S., Lamshöft, M., Zühlke, S., & Spiteller, M. (2013). Enantioselective degradation of the chiral fungicides metalaxyl and furalaxyl by Brevibacillus brevis. Chirality, 25(6), 336–340.

    Article  CAS  Google Scholar 

  • Sun, H., He, X., Ye, L., Zhang, X.-X., Wu, B., & Ren, H. (2017). Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River. Applied Microbiology Biotechnology Letters, 101(5), 2143–2152.

    Article  CAS  Google Scholar 

  • Teklu, B. M., Hailu, A., Wiegant, D. A., Scholten, B. S., & Van Den Brink, P. (2018). Impacts of nutrients and pesticides from small-and large-scale agriculture on the water quality of Lake Ziway Ethiopia. Environmental Science Pollution Research, 25(14), 13207–13216.

    Article  CAS  Google Scholar 

  • Tian, Y., Jiang, Y., Liu, Q., Dong, M., Xu, D., Liu, Y., & Xu, X. (2019). Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Science of the Total Environment, 667, 142–151.

    Article  CAS  Google Scholar 

  • Tiryaki, O., & Temur, C. (2010). The fate of pesticide in the environment. Journal of Biological, 4(10), 29–38.

    Google Scholar 

  • Vymazal, J., & Bezinová, T. (2015). The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environment International, 75, 11–20.

    Article  CAS  Google Scholar 

  • Wang, F., Bai, Y., Yang, F., Zhu, Q., Zhao, Q., Zhang, X., Wei, Y., & Liao, H. (2021). Degradation of Nitrogen, Phosphorus, and Organic Matter in Urban River Sediments by Adding Microorganisms. Sustainability, 13(5), 2580.

    Article  CAS  Google Scholar 

  • Wang, F., Yao, J., Liu, H., Liu, R., Chen, H., Yi, Z., Yu, Q., Ma, L., & Xing, B. (2015). Cu and Cr enhanced the effect of various carbon nanotubes on microbial communities in an aquatic environment. Journal of Hazardous Materials, 292, 137–145.

    Article  CAS  Google Scholar 

  • Wilkowska, A., & Biziuk, M. (2011). Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chemistry, 125(3), 803–812.

    Article  CAS  Google Scholar 

  • Wu, L., Long, T. Y., & Cooper, W. J. (2012). Temporal and spatial simulation of adsorbed nitrogen and phosphorus nonpoint source pollution load in xiaojiang watershed of three gorges reservoir area. China. Environmental Engineering Science, 29(4), 238–247.

    Article  CAS  Google Scholar 

  • Wu, Y., Xi, X., Tang, X., Luo, D., Gu, B., Lam, S. K., Vitousek, P. M., & Chen, D. (2018). Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proceedings of the National Academy of Sciences, 115(27), 7010–7015.

    Article  CAS  Google Scholar 

  • Xiongfang, A., Zhansheng, W., Wen, S., Huihua, Q., Luohong, Z., Xiaolin, X., & Bing, Y. (2021). Biochar for simultaneously enhancing the slow-release performance of fertilizers and minimizing the pollution of pesticides. Journal of Hazardous Materials, 407, 124865.

    Article  Google Scholar 

  • Xue, L., Hou, P., Zhang, Z., Shen, M., Liu, F., & Yang, L. (2020). Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agriculture Ecosystems Environment, 304, 107148.

    Article  CAS  Google Scholar 

  • Yang, C., Nan, J., & Li, J. (2019a). Driving factors and dynamics of phytoplankton community and functional groups in an estuary reservoir in the Yangtze River China. Water, 11(6), 1184.

    Article  CAS  Google Scholar 

  • Yang, Y., Gao, Y., Huang, X., Ni, P., Wu, Y., Deng, Y., & Zhan, A. (2019b). Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. Environmental Pollution, 245, 290–299.

    Article  CAS  Google Scholar 

  • Yin, S., Zhang, J., Guo, F., Zhao, L., Poma, G., Covaci, A., & Liu, W. (2019). Transplacental transfer of organochlorine pesticides: Concentration ratio and chiral properties. Environment International, 130, 104939.

    Article  CAS  Google Scholar 

  • Zhang, B., Wang, S., Diao, M., Fu, J., Xie, M., Shi, J., Liu, Z., Jiang, Y., Cao, X., & Borthwick, A. G. (2019). Microbial community responses to vanadium distributions in mining geological environments and bioremediation assessment. Journal of Geophysical Research Biogeosciences, 124(3), 601–615.

    Article  CAS  Google Scholar 

  • Zhang, J., Qin, J., Zhao, C., Liu, C., Xie, H., & Liang, S. (2015). Response of bacteria and fungi in soil microcosm under the presence of pesticide endosulfan. Water, Air, Soil Pollution, 226(4), 1–9.

    Article  Google Scholar 

  • Zhang, W., Li, T., Tang, J., Liu, X., Liu, Y., & Zhong, X. (2022). The profiles of chiral pesticides in peri-urban areas near Yangtze River: Enantioselective distribution characteristics and correlations with surface sediments. Journal of Environmental Sciences, 121, 199–210.

    Article  CAS  Google Scholar 

  • Zhao, P., Wang, Z., Li, K., Guo, X., & Zhao, L. (2018). Multi-residue enantiomeric analysis of 18 chiral pesticides in water, soil and river sediment using magnetic solid-phase extraction based on amino modified multiwalled carbon nanotubes and chiral liquid chromatography coupled with tandem mass spectrometry. Journal of Chromatography A, 1568, 8–21.

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Fundamental Research Funds for the Central. Fundamental Research Funds for the Central Universities, B210201007, Wenjun Zhang Universities (No. B210201007).

Author information

Authors and Affiliations

Authors

Contributions

WZ contributed to conceptualization and methodology. SD contributed to supervision. YJ contributed to data curation and writing—original draft preparation.

Corresponding author

Correspondence to Wenjun Zhang.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Ethical approval

There was no animal research in this study.

Data availability

No data availability.

Consent to participate and consent to publish

Informed consent was obtained from all individual participants included in the study. The authors affirm that consent to publish has been received from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 530 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Di, S. & Yan, J. Chiral pesticides levels in peri-urban area near Yangtze River and their correlations with water quality and microbial communities. Environ Geochem Health 45, 3817–3831 (2023). https://doi.org/10.1007/s10653-022-01459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01459-7

Keywords

Navigation