Skip to main content

Advertisement

Log in

Role of Up-Regulated Transmembrane Channel-Like Protein 5 in Pancreatic Adenocarcinoma

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Pancreatic adenocarcinoma (PAAD) is a malignant tumor responsible for a heavy disease burden. Previously, only one pan-cancer study of Transmembrane channel-like protein 5 (TMC5) showed that TMC5 was highly expressed in PAAD, but the results lacked comprehensive verification, and the mechanism of TMC5 in PAAD was still unclear.

Methods

For exploring the expression and clinical value of TMC5 in PAAD better, we adopted a comprehensive evaluation method, using internal immunohistochemistry (IHC) data combined with microarray and RNA-sequencing data collected from public databases. The single cell RNA-sequencing (scRNA-seq) data were exploited to explore the TMC5 expression in cell populations and intercellular communication. The potential mechanism of TMC5 in PAAD was analyzed from the aspects of immune infiltration, transcriptional regulation, function and pathway enrichment.

Results

Our IHC data includes 148 PAAD samples and 19 non-PAAD samples, along with the available microarray and RNA-sequencing data (1166 PAAD samples, 704 non-PAAD samples). The comprehensive evaluation results showed that TMC5 was evidently up-regulated in PAAD (SMD = 1.17). Further analysis showed that TMC5 was over-expressed in cancerous epithelial cells. Furthermore, TMC5 was up-regulated in more advanced tumor T and N stages. Interestingly, we found that STAT3 as an immune marker of Th17 cells was not only positively correlated with TMC5 and up-regulated in PAAD tissues, but also the major predicted TMC5 transcription regulator. Moreover, STAT3 was involved in cancer pathway of PAAD.

Conclusion

Up-regulated TMC5 indicates advanced tumor stage in PAAD patients, and its role in promoting PAAD development may be regulated by STAT3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the results of this study can be obtained from corresponding author upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71:209–249.

    Article  PubMed  Google Scholar 

  2. Khalaf N, El-Serag HB, Abrams HR, Thrift AP. Burden of Pancreatic Cancer: From Epidemiology to Practice. Clin Gastroenterol Hepatol 2021;19:876–884.

    Article  PubMed  Google Scholar 

  3. Huang J, Lok V, Ngai CH et al. Worldwide Burden of, Risk Factors for, and Trends in Pancreatic Cancer. Gastroenterology 2021;160:744–754.

    Article  PubMed  Google Scholar 

  4. McGuire, S. World Cancer Report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO Press, 2015. Adv Nutr, 2016. 7(2): p. 418–9.

  5. Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet 2020;395:2008–2020.

    Article  CAS  PubMed  Google Scholar 

  6. Lu Z, Zhang N, Giordano SH, Zhao H. Opioid use and associated factors among pancreatic cancer patients diagnosed between 2007 and 2015. Cancer Med, 2022.

  7. Yang Y, Ding Y, Gong Y et al. The genetic landscape of pancreatic head ductal adenocarcinoma in China and prognosis stratification. BMC Cancer 2022;22:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Molina-Montes E, Van Hoogstraten L, Gomez-Rubio P et al. Pancreatic Cancer Risk in Relation to Lifetime Smoking Patterns, Tobacco Type, and Dose-Response Relationships. Cancer Epidemiol Biomarkers Prev 2020;29:1009–1018.

    Article  PubMed  Google Scholar 

  9. Zhu H, Welinsky S, Soper ER, Brown KL, Abul-Husn NS, Lucas AL. Genetic Variants in Patients With a Family History of Pancreatic Cancer: Impact of Multigene Panel Testing. Pancreas 2021;50:602–606.

    Article  CAS  PubMed  Google Scholar 

  10. Sheng W, Tang J, Cao R, Shi X, Ma Y, Dong M. Numb-PRRL promotes TGF-β1- and EGF-induced epithelial-to-mesenchymal transition in pancreatic cancer. Cell Death Dis 2022;13:173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shokati Eshkiki Z, Khayer N, Talebi A, Karbalaei R, Akbari A. Novel insight into pancreatic adenocarcinoma pathogenesis using liquid association analysis. BMC Med Genomics 2022;15:30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma S, Tapper WJ, Collins A, Hamady ZZR. Predicting pancreatic cancer in the UK Biobank cohort using polygenic risk scores and diabetes mellitus. Gastroenterology, 2022.

  13. Oldfield L, Evans A, Rao RG et al. Blood levels of adiponectin and IL-1Ra distinguish type 3c from type 2 diabetes: Implications for earlier pancreatic cancer detection in new-onset diabetes. EBioMedicine 2022;75:103802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ducreux M, Cuhna AS, Caramella C et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2015;26:v56-68.

    Article  PubMed  Google Scholar 

  15. Yu S, Zhang C, Xie KP. Therapeutic resistance of pancreatic cancer: Roadmap to its reversal. Biochim Biophys Acta Rev Cancer 2021;1875:188461.

    Article  CAS  PubMed  Google Scholar 

  16. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022;72:7–33.

    Article  PubMed  Google Scholar 

  17. Zhu H, Li T, Du Y, Li M. Pancreatic cancer: challenges and opportunities. BMC Med 2018;16:214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arroyo M, Larrosa R, Gómez-Maldonado J, Cobo MÁ, Claros MG, Bautista R. Expression-based, consistent biomarkers for prognosis and diagnosis in lung cancer. Clin Transl Oncol 2020;22:1867–1874.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Wang S, Zhang X et al. Transmembrane Channel-Like 5 (TMC5) promotes prostate cancer cell proliferation through cell cycle regulation. Biochimie 2019;165:115–122.

    Article  CAS  PubMed  Google Scholar 

  20. Subrungruanga I, Thawornkunob C, Chawalitchewinkoon-Petmitrc P, Pairojkul C, Wongkham S, Petmitrb S. Gene expression profiling of intrahepatic cholangiocarcinoma. Asian Pac J Cancer Prev 2013;14:557–563.

    Article  PubMed  Google Scholar 

  21. Pan L, Fang J, Chen MY et al. Promising key genes associated with tumor microenvironments and prognosis of hepatocellular carcinoma. World J Gastroenterol 2020;26:789–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yusenko MV, Kovacs G. Identifying CD82 (KAI1) as a marker for human chromophobe renal cell carcinoma. Histopathology 2009;55:687–695.

    Article  PubMed  Google Scholar 

  23. Zhang H, Zhang X, Xu W, Wang J. TMC5 is Highly Expressed in Human Cancers and Corelates to Prognosis and Immune Cell Infiltration: A Comprehensive Bioinformatics Analysis. Front Mol Biosci 2021;8:810864.

    Article  CAS  PubMed  Google Scholar 

  24. Ye WY, Lu HP, Li JD, et al. Clinical Implication of E2F Transcription Factor 1 in Hepatocellular Carcinoma Tissues. Cancer Biother Radiopharm, 2021.

  25. He RQ, Li JD, Du XF et al. LPCAT1 overexpression promotes the progression of hepatocellular carcinoma. Cancer Cell Int 2021;21:442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao L, Pang YY, Guo XY et al. Polo like kinase 1 expression in cervical cancer tissues generated from multiple detection methods. PeerJ 2020;8:e10458.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kemp SB, Steele NG, Carpenter ES, et al. Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages. Life Sci Alliance, 2021. 4(6).

  28. Zhang X, Lan Y, Xu J et al. Cell Marker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res 2019;47:D721-d728.

    Article  CAS  PubMed  Google Scholar 

  29. Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database (Oxford), 2019. 2019.

  30. Huang Q, Liu Y, Du Y, Garmire LX. Evaluation of Cell Type Annotation R Packages on Single-cell RNA-seq Data. Genomics Proteomics Bioinformatics 2021;19:267–281.

    Article  PubMed  Google Scholar 

  31. Jin S, Guerrero-Juarez CF, Zhang L et al. Inference and analysis of cell-cell communication using Cell Chat. Nat Commun 2021;12:1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ionkina AA, Balderrama-Gutierrez G, Ibanez KJ et al. Transcriptome analysis of heterogeneity in mouse model of metastatic breast cancer. Breast Cancer Res 2021;23:93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ru B, Wong CN, Tong Y et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics 2019;35:4200–4202.

    Article  CAS  PubMed  Google Scholar 

  34. Chen S, Li Y, Zhu Y et al. SERPINE1 Overexpression Promotes Malignant Progression and Poor Prognosis of Gastric Cancer. J Oncol 2022;2022:2647825.

    PubMed  PubMed Central  Google Scholar 

  35. Mu W, Xie Y, Li J et al. High expression of PDZ-binding kinase is correlated with poor prognosis and immune infiltrates in hepatocellular carcinoma. World J Surg Oncol 2022;20:22.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zheng R, Wan C, Mei S et al. Cistrome Data Browser: expanded datasets and new tools for gene regulatory analysis. Nucleic Acids Res 2019;47:D729-d735.

    Article  CAS  PubMed  Google Scholar 

  37. Liu M, Du Q, Mao G, Dai N, Zhang F. MYB proto-oncogene like 2 promotes hepatocellular carcinoma growth and glycolysis via binding to the Optic atrophy 3 promoter and activating its expression. Bioengineered 2022;13:5344–5356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thomas ZV, Wang Z, Zang C. BART Cancer: a web resource for transcriptional regulators in cancer genomes. NAR Cancer, 2021. 3(1): p. zcab011.

  39. Kurtenbach S, Cruz AM, Rodriguez DA, Durante MA, Harbour JW. Uphyloplot2: visualizing phylogenetic trees from single-cell RNA-seq data. BMC Genomics 2021;22:419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Quan L, Ohgaki R, Hara S et al. Amino acid transporter LAT1 in tumor-associated vascular endothelium promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1 activation. J Exp Clin Cancer Res 2020;39:266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang CA, Chang IH, Hou PC et al. DUSP2 regulates extracellular vesicle-VEGF-C secretion and pancreatic cancer early dissemination. J Extracell Vesicles 2020;9:1746529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim DH, Kim EJ, Kim DH, Park SW. Dact2 is involved in the regulation of epithelial-mesenchymal transition. Biochem Biophys Res Commun 2020;524:190–197.

    Article  CAS  PubMed  Google Scholar 

  43. Song J, Tang Y, Luo X, Shi X, Song F, Ran L. Pan-Cancer Analysis Reveals the Signature of TMC Family of Genes as a Promising Biomarker for Prognosis and Immunotherapeutic Response. Front Immunol 2021;12:715508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hegde S, Krisnawan VE, Herzog BH et al. Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer. Cancer Cell 2020;37:289-307.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Manohar M, Verma AK, Singh G, Mishra A. Eosinophilic pancreatitis: a rare or unexplored disease entity? Prz Gastroenterol 2020;15:34–38.

    PubMed  PubMed Central  Google Scholar 

  46. Gitto SB, Beardsley JM, Nakkina SP et al. Identification of a novel IL-5 signaling pathway in chronic pancreatitis and crosstalk with pancreatic tumor cells. Cell Commun Signal 2020;18:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ibrahim U, Asti D, Saqib A, Mudduluru BM, Ayaz S, Odaimi M. Eosinophilia as the presenting sign in pancreatic cancer: an extremely rare occurrence. Postgrad Med 2017;129:399–401.

    Article  PubMed  Google Scholar 

  48. Perusina Lanfranca M, Zhang Y, Girgis A et al. Interleukin 22 Signaling Regulates Acinar Cell Plasticity to Promote Pancreatic Tumor Development in Mice. Gastroenterology 2020;158:1417-1432.e11.

    Article  CAS  PubMed  Google Scholar 

  49. Ganguly K, Krishn SR, Rachagani S et al. Secretory Mucin 5AC Promotes Neoplastic Progression by Augmenting KLF4-Mediated Pancreatic Cancer Cell Stemness. Cancer Res 2021;81:91–102.

    Article  CAS  PubMed  Google Scholar 

  50. Liu M, Zhang Y, Yang J et al. ZIP4 Increases Expression of Transcription Factor ZEB1 to Promote Integrin α3β1 Signaling and Inhibit Expression of the Gemcitabine Transporter ENT1 in Pancreatic Cancer Cells. Gastroenterology 2020;158:679-692.e1.

    Article  CAS  PubMed  Google Scholar 

  51. Jiang W, Chen C, Huang L, Shen J, Yang L. GATA4 Regulates Inflammation-Driven Pancreatic Ductal Adenocarcinoma Progression. Front Cell Dev Biol 2021;9:640391.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nagathihalli NS, Castellanos JA, Lamichhane P et al. Inverse Correlation of STAT3 and MEK Signaling Mediates Resistance to RAS Pathway Inhibition in Pancreatic Cancer. Cancer Res 2018;78:6235–6246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chiu CF, Hsu MI, Yeh HY, et al. Eicosapentaenoic Acid Inhibits KRAS Mutant Pancreatic Cancer Cell Growth by Suppressing Hepassocin Expression and STAT3 Phosphorylation. Biomolecules, 2021. 11(3).

  54. Piper M, Van Court B, Mueller A, et al. Targeting Treg-Expressed STAT3 Enhances NK-Mediated Surveillance of Metastasis and Improves Therapeutic Response in Pancreatic Adenocarcinoma. Clin Cancer Res, 2021.

  55. Fraunhoffer NA, Closa D, Folch-Puy E et al. Targeting REG3β limits pancreatic ductal adenocarcinoma progression through CTGF downregulation. Cancer Lett 2021;521:64–70.

    Article  CAS  PubMed  Google Scholar 

  56. Li J, Zhu C, Yue P et al. Identification of glycolysis related pathways in pancreatic adenocarcinoma and liver hepatocellular carcinoma based on TCGA and GEO datasets. Cancer Cell Int 2021;21:128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the technical support from Guangxi Key Laboratory of Medical Pathology and the data from all the public databases.

Funding

This study was supported by Natural Science Foundation of Guangxi, China (2018GXNSFAA050051), Guangxi Medical High-Level Key Talents Training “139” Program (2020), Guangxi Educational Science Planning Key Project (2021B167), Guangxi Medical University Education and Teaching Reform Project (2021XJGA02), Guangxi Medical University Teacher Teaching Ability Development Project (2202JFA20, 2202JFA02), Guangxi Higher Education Undergraduate Teaching Reform Project (2016JGA167), Guangxi Medical University Student Innovation and Entrepreneurship Training Program (202110598298).

Author information

Authors and Affiliations

Authors

Contributions

All authors have made significant contributions in the process of this study, including research design, experiment development, data collection and analysis, drafting and modification of paper. And all authors have reviewed and approved the submission of the paper.

Corresponding author

Correspondence to Dan-Ming Wei.

Ethics declarations

Conflict of interest

All authors declare that no conflict of interest in this study.

Ethical approval

The study was approved by the Ethics Committees of the First Affiliated Hospital of Guangxi Medical University (2021-KY-GUOJI-115, February 20, 2021) and Guilin Fanpu Biotechand (FANPU[2018]23, October 25, 2018).

Informed consent

We have obtained the informed consent of the patients or their family.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 18 kb)

(TIF 6704 kb)

(TIF 917 kb)

(TIF 2111 kb)

(TIF 2552 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, XY., Li, JD., Chen, G. et al. Role of Up-Regulated Transmembrane Channel-Like Protein 5 in Pancreatic Adenocarcinoma. Dig Dis Sci 68, 1894–1912 (2023). https://doi.org/10.1007/s10620-022-07771-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-022-07771-7

Keywords

Navigation