Skip to main content

Advertisement

Log in

Estimating inbreeding depression in natural plant populations using quantitative and molecular data

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Inbreeding and inbreeding depression are important issues in the biology and conservation of natural plant and animal populations, primarily when subpopulation sizes are reduced due to habitat fragmentation. In this study, we propose a method for estimating inbreeding depression in progenies of natural plant populations, combining the estimation of the fixation index by codominant markers with the experimental evaluation of quantitative traits. Our technique estimates apparent inbreeding depression in structured natural populations using the linear regression of phenotypic means on the inbreeding coefficients estimated with codominant markers. This method was applied to data from 112 maternal progenies of 10 natural subpopulations of Eugenia dysenterica DC, a fruiting tree species from the Brazilian savanna (Cerrado). The results show that the proposed method was efficient at detecting the presence of inbreeding depression for seedling emergence and initial growth traits in the species. This corroborates the importance of maintaining high levels of heterozygosity for in situ conservation or genetic restoration of natural populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguiar AV, Vencovsky R, Chaves LJ, Moura MF, Morais LK (2009) Genetics and expected selection gain for growth traits in Eugenia dysenterica DC populations. Bragantia 68:629–637

    Article  Google Scholar 

  • Alho JS, Lillandt B, Jaari S, Merilä J (2009) Multilocus heterozygosity and inbreeding in the Siberian jay. Conserv Genet 10:605–609

    Article  Google Scholar 

  • Amos W, Balmford A (2001) When does conservation genetics matter? Heredity 87:257–265

    Article  PubMed  CAS  Google Scholar 

  • Ayroles JF, Hughes KA, Rowe KC, Reedy MM, Rodriguez-Zaz SL, Drnevich JM, Cáceres CE, Paige KN (2009) A genomewide assessment of inbreeding depression: gene number, function and mode of action. Conserv Biol 23:920–930

    Article  PubMed  Google Scholar 

  • Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031

    Article  PubMed  CAS  Google Scholar 

  • Chapman JR, Nakagawa S, Coltman DW, Slates J, Sheldon BC (2009) A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 18:2746–2765

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340

    Article  PubMed  CAS  Google Scholar 

  • Cockerham CC (1973) Analysis of gene frequencies. Genetics 74:679–700

    PubMed  CAS  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Burgess Pub Co, Mineapolis

    Google Scholar 

  • Falconer DS, MacKay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, Harlow

    Google Scholar 

  • Hansson B, Westerberg L (2008) Heterozigosity-fitness correlations within inbreeding classes: local or genome-wide effects? Conserv Genet 9:73–83

    Article  Google Scholar 

  • Hedrick W (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636

    Article  Google Scholar 

  • Hufford KM, Hamrick JL (2003) Viability selection at three early life stages of the tropical tree, Plalypodium elegans (Fabaceae, Papilionoideae). Evolution 57:518–526

    PubMed  Google Scholar 

  • Husband BC, Schemke DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends in Ecol Evol 17:230–241

    Article  Google Scholar 

  • Lynch M, Walsh B (1997) Genetics and analysis of quantitative traits. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia Univ Press, New York

    Google Scholar 

  • Rawlings JO (1988) Applied regression analysis: a research tool. The Wadsworth and Books, Pacific Grove

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. Freeman and Co, New York

    Google Scholar 

  • Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill Book Co, New York

    Google Scholar 

  • Telles MPC, Coelho ASG, Chaves LJ, Diniz-Filho JAF, Valva FD (2003) Genetic diversity and population structure of Eugenia dysenterica DC. (“cagaiteira”- Myrtaceae) in Central Brazil: spatial analysis and implications for conservation and management. Conserv Genet 4:685–695

    Article  CAS  Google Scholar 

  • Trindade MG, Chaves LJ (2005) Genetic structure of natural Eugenia dysenterica DC (Myrtaceae) populations in northeastern Goiás, Brazil, acessed by morfhological traits and RAPD markers. Genet Mol Biol 28:407–413

    Article  CAS  Google Scholar 

  • Wright S (1951) The genetical structure of population. Ann Eugenics 15:395–420

    Google Scholar 

  • Wright LI, Tregenza T, Hosken DJ (2008) Inbreeding, inbreeding depression and extinction. Conserv Genet 9:833–843

    Article  Google Scholar 

  • Zucchi MI, Brondani RPV, Pinheiro JB, Chaves LJ, Coelho ASG, Vencovsky R (2003) Genetic structure and gene flow in Eugenia dysenterica DC in the Brasilian Cerrado utilizing SSR markers. Genet Mol Biol 26:449–457

    Article  CAS  Google Scholar 

  • Zucchi MI, Pinheiro JB, Chaves LJ, Coelho ASG, Couto MA, Morais LK, Vencovsky R (2005) Genetic structure and gene flow of Eugenia dysenterica natural populations. Pesq Agropec Bras 40:975–980

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to RV Naves for helping in field collection and to JAF Diniz-Filho and two anonymous reviewers for helpful comments and suggestions on the manuscript. This work was supported by a senior postdoctoral grant to LJ Chaves and research fellowships to LJ Chaves, R Vencovsky, MPC Telles and ASG Coelho, from the Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lázaro José Chaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaves, L.J., Vencovsky, R., Silva, R.S.M. et al. Estimating inbreeding depression in natural plant populations using quantitative and molecular data. Conserv Genet 12, 569–576 (2011). https://doi.org/10.1007/s10592-010-0164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0164-y

Keywords

Navigation