Skip to main content

Advertisement

Log in

The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Methamphetamine (METH) is an amphetamine-type stimulant that is highly toxic to the central nervous system (CNS). Repeated intake of METH can lead to addiction, which has become a globalized problem, resulting in multiple public health and safety problems. Recently, the non-coding RNA (ncRNA) has been certified to play an essential role in METH addiction through various mechanisms. Herein, we mainly focused on three kinds of ncRNAs including long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs), which are involved in neurotoxicity effects such as cognitive impairment, behavioral abnormalities, and psychiatric disorders due to METH abuse. In addition, differential expression (DE) ncRNAs also suggest that specific responses and sensitivity to METH neurotoxicity exist in different brain regions and cells. We summarized the relationships between the ncRNAs and METH-induced neurotoxicity and psychiatric disturbances, respectively, hoping to provide new perspectives and strategies for the prevention and treatment of METH abuse.

Graphical Abstract

Schematic diagram of the non-coding RNAs (ncRNAs) was involved in methamphetamine (METH)-induced neurotoxicity. The ncRNAs were involved in METH-induced blood–brain barrier disruption, neuronal, astrocyte, and microglial damage, and synaptic neurotransmission impairment. The study of ncRNAs is a hot spot in the future to further understand the neurotoxicity of METH and provide more favorable scientific support for clinical diagnosis and innovation of related treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200(6):629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akindipe T, Wilson D, Stein DJ (2014) Psychiatric disorders in individuals with methamphetamine dependence: prevalence and risk factors. Metab Brain Dis 29(2):351–357

    Article  CAS  PubMed  Google Scholar 

  • Ares-Santos S, Granado N, Espadas I, Martinez-Murillo R, Moratalla R (2014) Methamphetamine causes degeneration of dopamine cell bodies and terminals of the nigrostriatal pathway evidenced by silver staining. Neuropsychopharmacology 39(5):1066–1080

    Article  CAS  PubMed  Google Scholar 

  • Arzua T, Jiang C, Yan Y, Bai X (2021) The importance of non-coding RNAs in environmental stress-related developmental brain disorders: a systematic review of evidence associated with exposure to alcohol, anesthetic drugs, nicotine, and viral infections. Neurosci Biobehav Rev 128:633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asanuma M, Tsuji T, Miyazaki I, Miyoshi K, Ogawa N (2003) Methamphetamine-induced neurotoxicity in mouse brain is attenuated by ketoprofen, a non-steroidal anti-inflammatory drug. Neurosci Lett 352(1):13–16

    Article  CAS  PubMed  Google Scholar 

  • Bai Y, Zhang Y, Hua J, Yang X, Zhang X, Duan M, Zhu X, Huang W, Chao J, Zhou R, Hu G, Yao H (2016) Silencing microRNA-143 protects the integrity of the blood-brain barrier: implications for methamphetamine abuse. Sci Rep 6:35642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battaglia G, Fornai F, Busceti CL, Aloisi G, Cerrito F, De Blasi A, Melchiorri D, Nicoletti F (2002) Selective blockade of mGlu5 metabotropic glutamate receptors is protective against methamphetamine neurotoxicity. J Neurosci 22(6):2135–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benarroch EE (2005) Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc 80(10):1326–1338

    Article  CAS  PubMed  Google Scholar 

  • Boeckel JN, Jae N, Heumuller AW, Chen W, Boon RA, Stellos K, Zeiher AM, John D, Uchida S, Dimmeler S (2015) Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 117(10):884–890

    Article  CAS  PubMed  Google Scholar 

  • Boroujeni ME, Nasrollahi A, Boroujeni PB, Fadaeifathabadi F, Farhadieh M, Tehrani AM, Nakhaei H, Sajedian AM, Peirouvi T, Aliaghaei A (2020) Exposure to methamphetamine exacerbates motor activities and alters circular RNA profile of cerebellum. J Pharmacol Sci 144(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Bosch PJ, Benton MC, Macartney-Coxson D, Kivell BM (2015) mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci 16:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowyer JF, Davies DL, Schmued L, Broening HW, Newport GD, Slikker W Jr, Holson RR (1994) Further studies of the role of hyperthermia in methamphetamine neurotoxicity. J Pharmacol Exp Ther 268(3):1571–1580

    CAS  PubMed  Google Scholar 

  • Bowyer JF, Holson RR, Miller DB, O’Callaghan JP (2001) Phenobarbital and dizocilpine can block methamphetamine-induced neurotoxicity in mice by mechanisms that are independent of thermoregulation. Brain Res 919(1):179–183

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Hanson GR, Fleckenstein AE (2000) Methamphetamine rapidly decreases vesicular dopamine uptake. J Neurochem 74(5):2221–2223

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Jayanthi S, Deng X (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Review Neurotox Res 8(3–4):199–206

    Article  CAS  PubMed  Google Scholar 

  • Cadet JL, Brannock C, Jayanthi S, Krasnova IN (2015) Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat. Mol Neurobiol 51(2):696–717

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Huang E, Luo B, Yang Y, Zhang F, Liu C, Lin Z, Xie WB, Wang H (2016) Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine. Cell Death Dis 7(3):e2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappon GD, Pu C, Vorhees CV (2000) Time-course of methamphetamine-induced neurotoxicity in rat caudate-putamen after single-dose treatment. Brain Res 863(1–2):106–111

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekar V, Dreyer JL (2011) Regulation of MiR-124, Let-7d, and MiR-181a in the accumbens affects the expression, extinction, and reinstatement of cocaine-induced conditioned place preference. Neuropsychopharmacology 36(6):1149–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chavoshi H, Boroujeni ME, Abdollahifar MA, Amini A, Tehrani AM, Moghaddam MH, Norozian M, Farahani RM, Aliaghaei A (2020) From dysregulated microRNAs to structural alterations in the striatal region of METH-injected rats. J Chem Neuroanat 109:101854

    Article  CAS  PubMed  Google Scholar 

  • Chen LL, Feng SS, Fan ZS, Gong C, Liu BY, Liu ZH, Li CW, Song EW, Sun SH, Wu GZ, Wu H, Wu M, Xu G, Yuan JX, Zeng CY, Zhu YM (2019) Progress in non-coding RNA research (in Chinese). Sci Sin Vitae 49:1573–1605. https://doi.org/10.1360/SSV-2019-0179

  • Chen CK, Lin SK, Chen YC, Huang MC, Chen TT, Ree SC, Wang LJ (2015) Persistence of psychotic symptoms as an indicator of cognitive impairment in methamphetamine users. Drug Alcohol Depend 148:158–164

    Article  PubMed  Google Scholar 

  • Chen X, Qiu F, Zhao X, Lu J, Tan X, Xu J, Chen C, Zhang F, Liu C, Qiao D, Wang H (2020) Astrocyte-derived lipocalin-2 is involved in mitochondrion-related neuronal apoptosis induced by methamphetamine. ACS Chem Neurosci 11(8):1102–1116

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zou L, Dai Y, Sun J, Chen C, Zhang Y, Peng Q, Zhang Z, Xie Z, Wu H, Tian W, Yu X, Yu J, Wang K (2021) Prognostic plasma exosomal microRNA biomarkers in patients with substance use disorders presenting comorbid with anxiety and depression. Addiction 11(1):6271

    CAS  Google Scholar 

  • Cheng M, Yang J, Zhao X, Zhang E, Zeng Q, Yu Y, Yang L, Wu B, Yi G, Mao X, Huang K, Dong N, Xie M, Limdi NA, Prabhu SD, Zhang J, Qin G (2019) Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun 10(1):959

    Article  PubMed  PubMed Central  Google Scholar 

  • Chipana C, Torres I, Camarasa J, Pubill D, Escubedo E (2008) Memantine protects against amphetamine derivatives-induced neurotoxic damage in rodents. Neuropharmacology 54(8):1254–1263

    Article  CAS  PubMed  Google Scholar 

  • Chong ZZ, Shang YC, Wang S, Maiese K (2012) A Critical kinase cascade in neurological disorders: PI 3-K, Akt, and mTOR. Future Neurol 7(6):733–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cisneros IE, Ghorpade A (2012) HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res 10(5):392–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comer SD, Hart CL, Ward AS, Haney M, Foltin RW, Fischman MW (2001) Effects of repeated oral methamphetamine administration in humans. Psychopharmacology 155(4):397–404

    Article  CAS  PubMed  Google Scholar 

  • Drug Situation in China. Office of China National Narcotics Control Commission, 2020. https://www.gov.cn/xinwen/2020-06/28/content_5522443.htm

  • Davidson C, Chen Q, Zhang X, Xiong X, Lazarus C, Lee TH, Ellinwood EH (2007) Deprenyl treatment attenuates long-term pre- and post-synaptic changes evoked by chronic methamphetamine. Eur J Pharmacol 573(1–3):100–110

    Article  CAS  PubMed  Google Scholar 

  • Dell’Orco M, Elyaderani A, Vannan A, Sekar S, Powell G, Liang WS, Neisewander JL, Perrone-Bizzozero NI (2021) HuD regulates mRNA-circRNA-miRNA networks in the mouse striatum linked to neuronal development and drug addiction. Biology (Basel) 10(9):939

    CAS  PubMed  Google Scholar 

  • Deng X, Ladenheim B, Jayanthi S, Cadet JL (2007) Methamphetamine administration causes death of dopaminergic neurons in the mouse olfactory bulb. Biol Psychiatry 61(11):1235–1243

    Article  CAS  PubMed  Google Scholar 

  • Deng B, Tang X, Wang Y (2022) Regulation and bioinformatic analysis of circ_0015891/miR-129-1-3p axis in methamphetamine-induced dopaminergic apoptosis. Front Endocrinol (lausanne) 13:999211

    Article  PubMed  Google Scholar 

  • Du HY, Cao DN, Chen Y, Wang L, Wu N, Li J (2016) Alterations of prefrontal cortical microRNAs in methamphetamine self-administering rats: from controlled drug intake to escalated drug intake. Neurosci Lett 611:21–27

    Article  CAS  PubMed  Google Scholar 

  • Du L, Shen K, Bai Y, Chao J, Hu G, Zhang Y, Yao H (2019) Involvement of NLRP3 inflammasome in methamphetamine-induced microglial activation through miR-143/PUMA axis. Toxicol Lett 301:53–63

    Article  CAS  PubMed  Google Scholar 

  • Egashira T, Yamanaka Y (1993) Changes in monoamine oxidase activity in mouse brain associated with d-methamphetamine dependence and withdrawal. Biochem Pharmacol 46(4):609–614

    Article  CAS  PubMed  Google Scholar 

  • Escubedo E, Guitart L, Sureda FX, Jimenez A, Pubill D, Pallas M, Camins A, Camarasa J (1998) Microgliosis and down-regulation of adenosine transporter induced by methamphetamine in rats. Brain Res 814(1–2):120–126

    Article  CAS  PubMed  Google Scholar 

  • Fan Q, Wu M, Li C, Li J (2022) MiR-107 aggravates oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury through inactivating PI3K-AKT signalling pathway by targeting FGF9/FGF12 in PC12 cells. J Stroke Cerebrovasc Dis 31(4):106295

    Article  PubMed  Google Scholar 

  • Fang Z, Zhang S, Wang Y, Shen S, Wang F, Hao Y, Li Y, Zhang B, Zhou Y, Yang H (2016) Long non-coding RNA MALAT-1 modulates metastatic potential of tongue squamous cell carcinomas partially through the regulation of small proline rich proteins. BMC Cancer 16(1):706

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng S, Ren J, Zhou W, Cai L, Tu L, Li T, Yang X, Ren Y, Gu R, Zhang Q, Yao H, Qu X, Wang Q, Tian J (2019) Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. J Cell Biochem 75:105734

    Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  • Freilich RW, Woodbury ME, Ikezu T (2013) Integrated expression profiles of mRNA and miRNA in polarized primary murine microglia. PLoS One 8(11):e79416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu XD (2014) Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev 1(2):190–204

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Yu JY, Yang S, Wu M, Hammad SM, Connell AR, Du M, Chen J, Lyons TJ (2016) Survival or death: a dual role for autophagy in stress-induced pericyte loss in diabetic retinopathy. Diabetologia 59(10):2251–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukui K, Kariyama H, Kashiba A, Kato N, Kimura H (1986) Further confirmation of heterogeneity of the rat striatum: different mosaic patterns of dopamine fibers after administration of methamphetamine or reserpine. Brain Res 382(1):81–86

    Article  CAS  PubMed  Google Scholar 

  • Fukumura M, Cappon GD, Pu C, Broening HW, Vorhees CV (1998) A single dose model of methamphetamine-induced neurotoxicity in rats: effects on neostriatal monoamines and glial fibrillary acidic protein. Brain Res 806(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Kataoka M, Liu N, Liang T, Huang ZP, Gu F, Ding J, Liu J, Zhang F, Ma Q, Wang Y, Zhang M, Hu X, Kyselovic J, Hu X, Pu WT, Wang J, Chen J, Wang DZ (2019) Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun 10(1):1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Goff LA, Groff AF, Sauvageau M, Trayes-Gibson Z, Sanchez-Gomez DB, Morse M, Martin RD, Elcavage LE, Liapis SC, Gonzalez-Celeiro M, Plana O, Li E, Gerhardinger C, Tomassy GS, Arlotta P, Rinn JL (2015) Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 112(22):6855–6862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goh SY, Chao YX, Dheen ST, Tan EK, Tay SS (2019) Role of MicroRNAs in parkinson’s disease. Int J Mol Sci 20(22):5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golden SA, Russo SJ (2012) Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb Perspect Med 2(10):a01957

    Article  Google Scholar 

  • Gowing LR, Ali RL, Allsop S, Marsden J, Turf EE, West R, Witton J (2015) Global statistics on addictive behaviours: 2014 status report. Addiction 110(6):904–919

    Article  PubMed  Google Scholar 

  • Graham DL, Noailles PA, Cadet JL (2008) Differential neurochemical consequences of an escalating dose-binge regimen followed by single-day multiple-dose methamphetamine challenges. J Neurochem 105(5):1873–1885

    Article  CAS  PubMed  Google Scholar 

  • Gramage E, Rossi L, Granado N, Moratalla R, Herradon G (2010) Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum. Neuroscience 170(1):308–316

    Article  CAS  PubMed  Google Scholar 

  • Gu WJ, Zhang C, Zhong Y, Luo J, Zhang CY, Zhang C, Wang C (2020) Altered serum microRNA expression profile in subjects with heroin and methamphetamine use disorder. Biomed Pharmacother 125:109918

    Article  CAS  PubMed  Google Scholar 

  • Gu F, Ji D, Ni H, Chen D (2021a) SRY-Box 21 antisense RNA 1 knockdown diminishes amyloid beta(25–35)-induced neuronal damage by miR-132/PI3K/AKT pathway. Neurochem Res 46(9):2376–2386

    Article  CAS  PubMed  Google Scholar 

  • Gu YJ, Chen L, Cheng L, Zhou MY, Wang Y (2021b) Non-coding RNA: insights into the mechanism of methamphetamine neurotoxicity. Mol Cell Biochem 476(9):3319–3328

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Qu B, Song C, Zhu S, Gong N, Sun J (2022) Celastrol attenuates 6-hydroxydopamine-induced neurotoxicity by regulating the miR-146a/PI3K/Akt/mTOR signaling pathways in differentiated rat pheochromocytoma cells. J Affect Disord 316:233–242

    Article  CAS  PubMed  Google Scholar 

  • Hall MG, Alhassoon OM, Stern MJ, Wollman SC, Kimmel CL, Perez-Figueroa A, Radua J (2015) Gray matter abnormalities in cocaine versus methamphetamine-dependent patients: a neuroimaging meta-analysis. Am J Drug Alcohol Abuse 41(4):290–299

    Article  PubMed  Google Scholar 

  • Hansen JP, Riddle EL, Sandoval V, Brown JM, Gibb JW, Hanson GR, Fleckenstein AE (2002) Methylenedioxymethamphetamine decreases plasmalemmal and vesicular dopamine transport: mechanisms and implications for neurotoxicity. J Pharmacol Exp Ther 300(3):1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Harvey DC, Lacan G, Melegan WP (2000) Regional heterogeneity of dopaminergic deficits in vervet monkey striatum and substantia nigra after methamphetamine exposure. Exp Brain Res 133(3):349–358

    Article  CAS  PubMed  Google Scholar 

  • Hayley S, Poulter MO, Merali Z, Anisman H (2005) The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 135(3):659–678

    Article  CAS  PubMed  Google Scholar 

  • He D, Tan J, Zhang J (2017) miR-137 attenuates Aβ-induced neurotoxicity through inactivation of NF-κB pathway by targeting TNFAIP1 in Neuro2a cells. Biochem Biophys Res Commun 490(3):941–947

    Article  CAS  PubMed  Google Scholar 

  • Hemmerle AM, Herman JP, Seroogy KB (2012) Stress, depression and Parkinson’s disease. Exp Neurol 233(1):79–86

    Article  CAS  PubMed  Google Scholar 

  • Hetz C, Saxena S (2017) ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 13(8):477–491

    Article  CAS  PubMed  Google Scholar 

  • Hirata H, Ladenheim B, Carlson E, Epstein C, Cadet JL (1996) Autoradiographic evidence for methamphetamine-induced striatal dopaminergic loss in mouse brain: attenuation in CuZn-superoxide dismutase transgenic mice. Brain Res 714(1–2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Zhang Y, Han B, Bai Y, Zhou R, Gan G, Chao J, Hu G, Yao H (2017) Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy 13(10):1722–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang E, Huang H, Guan T, Liu C, Qu D, Xu Y, Yang J, Yan L, Xiong Y, Liang T, Wang Q, Chen L (2019) Involvement of C/EBPβ-related signaling pathway in methamphetamine-induced neuronal autophagy and apoptosis. Toxicol Lett 312:11–21

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Ding J, Wang X, Gu C, He Y, Li Y, Fan H, Xie Q, Qi X, Wang Z, Qiu P (2022) Transfer of neuron-derived alpha-synuclein to astrocytes induces neuroinflammation and blood-brain barrier damage after methamphetamine exposure: Involving the regulation of nuclear receptor-associated protein 1. Brain Behav Immun 106:247–261

    Article  CAS  PubMed  Google Scholar 

  • Hwang JS, Cha EH, Park B, Ha E, Seo JH (2020) PBN inhibits a detrimental effect of methamphetamine on brain endothelial cells by alleviating the generation of reactive oxygen species. Arch Pharm Res 43(12):1347–1355

    Article  CAS  PubMed  Google Scholar 

  • Jadaun KS, Sharma A, Siddiqui EM, Mehan S (2022) Targeting abnormal PI3K/AKT/mTOR signaling in intracerebral hemorrhage: a systematic review on potential drug targets and influences of signaling modulators on other neurological disorders. Curr Rev Clin Exp Pharmacol 17(3):174–191

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, Ladenheim B, Andrews AM, Cadet JL (1999) Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (Ecstasy). Neuroscience 91(4):1379–1387

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, Deng XL, Noailles PAH, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. Faseb J 18(2):238–251. https://doi.org/10.1096/fj.03-0295com

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi S, Deng X, Ladenheim B, McCoy MT, Cluster A, Cai NS, Cadet JL (2005) Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proc Natl Acad Sci USA 102(3):868–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayanthi S, McCoy MT, Beauvais G, Ladenheim B, Gilmore K, Wood W 3rd, Becker K, Cadet JL (2009) Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS One 4(6):e6092

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeng W, Ramkissoon A, Parman T, Wells PG (2006) Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal degeneration. FASEB J 20(6):638–650

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Zhang Y (2020) MiR-539–5p decreases amyloid β-protein production, hyperphosphorylation of Tau and Memory impairment by regulating PI3K/Akt/GSK-3β pathways in APP/PS1 double transgenic mice. Neurotox Res. 38(2):524–535

    Article  CAS  PubMed  Google Scholar 

  • Jing L, Jin C, Lu Y, Huo P, Zhou L, Wang Y, Tian Y (2015) Investigation of microRNA expression profiles associated with human alcoholic cardiomyopathy. Cardiology 130(4):223–233

    Article  CAS  PubMed  Google Scholar 

  • Ju H, Yang Z (2022) H19 silencing decreases kainic acid-induced hippocampus neuron injury via activating the PI3K/AKT pathway via the H19/miR-206 axis. Biotechnol Lett 240(7–8):2109–2120

    CAS  Google Scholar 

  • Kalani A, Kamat PK, Familtseva A, Chaturvedi P, Muradashvili N, Narayanan N, Tyagi SC, Tyagi N (2014) Role of microRNA29b in blood-brain barrier dysfunction during hyperhomocysteinemia: an epigenetic mechanism. J Cereb Blood Flow Metab 34(7):1212–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    Article  CAS  PubMed  Google Scholar 

  • Kitamura O, Takeichi T, Wang EL, Tokunaga I, Ishigami A, Kubo S (2010) Microglial and astrocytic changes in the striatum of methamphetamine abusers. Leg Med (tokyo) 12(2):57–62

    Article  CAS  PubMed  Google Scholar 

  • Klongpanichapak S, Phansuwan-Pujito P, Ebadi M, Govitrapong P (2007) Melatonin protects SK-N-SH neuroblastoma cells from amphetamine-induced neurotoxicity. J Pineal Res 43(1):65–73

    Article  CAS  PubMed  Google Scholar 

  • Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kour S, Rath PC (2015) Age-dependent differential expression profile of a novel intergenic long noncoding RNA in rat brain. Int J Dev Neurosci 46:55–66

    Article  CAS  PubMed  Google Scholar 

  • Kousik SM, Napier TC, Carvey PM (2012) The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol 3:121

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60(2):379–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610

    Article  CAS  PubMed  Google Scholar 

  • Kuhn DM, Angoa-Pérez M, Thomas DM (2011) Nucleus accumbens invulnerability to methamphetamine neurotoxicity. ILAR J 52(3):352–365

    Article  CAS  PubMed  Google Scholar 

  • LaVoie MJ, Card JP, Hastings TG (2004) Microglial activation precedes dopamine terminal pathology in methamphetamine-induced neurotoxicity. Exp Neurol 187(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Le Strat YRNG (2016) Drug Addictions and Genetics of the Dopamine Pathway, Neuropathology of Drug Addictions and Substance Misuse. Elsevier, Netherlands, pp 176–182

    Book  Google Scholar 

  • Lee HS, Jeong GS (2021) 6,7,4’-Trihydroxyflavanone mitigates methamphetamine-induced neurotoxicity in SH-SY5y cells via Nrf2/heme oxyganase-1 and PI3K/Akt/mTOR signaling pathways. Molecules 26(9):2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leitão RA, Fontes-Ribeiro CA, Silva AP (2021) The effect of parthenolide on methamphetamine-induced blood-brain barrier and astrocyte alterations. Eur J Clin Invest 52(4):e13694

    PubMed  Google Scholar 

  • Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  PubMed  Google Scholar 

  • Li H, Li C, Zhou Y, Luo C, Ou J, Li J, Mo Z (2018) Expression of microRNAs in the serum exosomes of methamphetamine-dependent rats vs. ketamine-dependent rats. Exp Ther Med 15(4):3369–3375

    PubMed  PubMed Central  Google Scholar 

  • Li HC, Lin YB, Li C, Luo CH, Zhou YT, Ou JY, Li J, Mo ZX (2018b) Expression of miRNAs in serum exosomes versus hippocampus in methamphetamine-induced rats and intervention of rhynchophylline. Evid Based Complement Alternat Med 2018:8025062

    PubMed  PubMed Central  Google Scholar 

  • Li J, Shi Q, Wang Q, Tan X, Pang K, Liu X, Zhu S, Xi K, Zhang J, Gao Q, Hu Y, Sun J (2019) Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neurosci Lett 701:146–153

    Article  CAS  PubMed  Google Scholar 

  • Li J, Sun Q, Zhu S, Xi K, Shi Q, Pang K, Liu X, Li M, Zhang Y, Sun J (2020) Knockdown of circHomer1 ameliorates METH-induced neuronal injury through inhibiting Bbc3 expression. Neurosci Lett 732:135050

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhu L, Su H, Liu D, Yan Z, Ni T, Wei H, Goh ELK, Chen T (2021) Regulation of miR-128 in the nucleus accumbens affects methamphetamine-induced behavioral sensitization by modulating proteins involved in neuroplasticity. Addict Biol 26(1):e12881

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wang T, Yu Y (2022) miR-424 inhibits apoptosis and inflammatory responses induced by sevoflurane through TLR4/MyD88/NF-κB pathway. BMC Anesthesiol 22(1):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhang H, Sun L, Zhu K, Lang W (2020) miR-29c-3p increases cell viability and suppresses apoptosis by regulating the TNFAIP1/NF-κB signaling pathway via TNFAIP1 in Aβ-treated neuroblastoma cells. Neurochem Res 45(10):2375–2384

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Liang M, Zhu L, Zhou TT, Wang Y, Wang R, Wu FF, Goh ELK, Chen T (2021) Potential Ago2/miR-3068-5p cascades in the nucleus accumbens contribute to methamphetamine-induced locomotor sensitization of mice. Front Pharmacol 12:708034. https://doi.org/10.3389/fphar.2021.708034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Wang X, Youmans DT, Cech TR (2017) How do lncRNAs regulate transcription? Sci Adv 3(9):eaao2110

    Article  PubMed  PubMed Central  Google Scholar 

  • Lugli G, Torvik VI, Larson J, Smalheiser NR (2008) Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem 106(2):650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Zhang P, Wang F, Zhang H, Yang Y, Shi C, Xia Y, Peng J, Liu W, Yang Z, Qin H (2012) Elevated oncofoetal miR-17-5p expression regulates colorectal cancer progression by repressing its target gene P130. Nat Commun 3:1291

    Article  PubMed  Google Scholar 

  • Ma M, Xu H, Liu G, Wu J, Li C, Wang X, Zhang S, Xu H, Ju S, Cheng W, Dai L, Wei Y, Tian Y, Fu X (2019) Metabolism-induced tumor activator 1 (MITA1), an energy stress-inducible long noncoding RNA promotes hepatocellular carcinoma metastasis. Hepatology 70(1):215–230

    Article  CAS  PubMed  Google Scholar 

  • Magee JC, Grienberger C (2020) Synaptic plasticity forms and functions. Annu Rev Neurosci 43:95–117

    Article  CAS  PubMed  Google Scholar 

  • Mandyam CD, Wee S, Eisch AJ, Richardson HN, Koob GF (2007) Methamphetamine self-administration and voluntary exercise have opposing effects on medial prefrontal cortex gliogenesis. J Neurosci 27(42):11442–11450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec no 1):R17-29

    Article  CAS  PubMed  Google Scholar 

  • McKetin R (2018) Methamphetamine psychosis: insights from the past. Addiction 113(8):1522–1527

    Article  PubMed  Google Scholar 

  • McKetin R, Kelly E, McLaren J (2006) The relationship between crystalline methamphetamine use and methamphetamine dependence. Drug Alcohol Depend 85(3):198–204

    Article  CAS  PubMed  Google Scholar 

  • Mendelson J, Uemura N, Harris D, Nath RP, Fernandez E, Jacob P 3rd, Everhart ET, Jones RT (2006) Human pharmacology of the methamphetamine stereoisomers. Clin Pharmacol Ther 80(4):403–420

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Zhang C (2020) TBHQ attenuates neurotoxicity induced by methamphetamine in the VTA through the Nrf2/HO-1 and PI3K/AKT signaling pathways. Oxid Med Cell Longev 2020:8787156

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng Y, Zhang Y, Tregoubov V, Falls DL, Jia Z (2003) Regulation of spine morphology and synaptic function by LIMK and the actin cytoskeleton. Rev Neurosci 14(3):233–240

    Article  CAS  PubMed  Google Scholar 

  • Miquel M, Vazquez-Sanroman D, Carbo-Gas M, Gil-Miravet I, Sanchis-Segura C, Carulli D, Manzo J, Coria-Avila GA (2016) Have we been ignoring the elephant in the room? seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci Biobehav Rev 60:1–11

    Article  PubMed  Google Scholar 

  • Miyamoto Y, Iida A, Sato K, Muramatsu S, Nitta A (2014) Knockdown of dopamine D(2) receptors in the nucleus accumbens core suppresses methamphetamine-induced behaviors and signal transduction in mice. Int J Neuropsychopharmacol 18(4):pyu038

    Article  PubMed  Google Scholar 

  • Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, Tizabi Y, Costa G, Morelli M (2017) Amphetamine-related drugs neurotoxicity in humans and in experimental animals: main mechanisms. Prog Neurobiol 155:149–170

    Article  CAS  PubMed  Google Scholar 

  • Morgan ME, Gibb JW (1980) Short-term and long-term effects of methamphetamine on biogenic amine metabolism in extra-striatal dopaminergic nuclei. Neuropharmacology 19(10):989–995

    Article  CAS  PubMed  Google Scholar 

  • Moszczynska A, Callan SP (2017) Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. J Pharmacol Exp Ther 362(3):474–488

    Article  CAS  PubMed  Google Scholar 

  • Moszczynska A, Yamamoto BK (2011) Methamphetamine oxidatively damages parkin and decreases the activity of 26S proteasome in vivo. J Neurochem 116(6):1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Natera-Naranjo O, Aschrafi A, Gioio AE, Kaplan BB (2010) Identification and quantitative analyses of microRNAs located in the distal axons of sympathetic neurons. RNA 16(8):1516–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestler EJ, Luscher C (2019) The molecular basis of drug addiction: linking epigenetic to synaptic and circuit mechanisms. Neuron 102(1):48–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni T, Li Y, Wang R, Hu T, Guan F, Zhu L, Han W, Chen T (2019) The potential involvement of miR-204-3p-axon guidance network in methamphetamine-induced locomotor sensitization of mice. Neurosci Lett 707:134303

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Miller DB (1994) Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 270(2):741–751

    CAS  PubMed  Google Scholar 

  • Patterson SL (2015) Immune dysregulation and cognitive vulnerability in the aging brain: interactions of microglia, IL-1β BDNF and synaptic plasticity. Neuropharmacology 96(Pt A):11–18

    Article  CAS  PubMed  Google Scholar 

  • Pike E, Stoops WW, Rush CR (2016) Acute buspirone dosing enhances abuse-related subjective effects of oral methamphetamine. Pharmacol Biochem Behav 150–151:87–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 17(1):64–70

    Article  CAS  PubMed  Google Scholar 

  • Proebstl L, Kamp F, Koller G, Soyka M (2018) Cognitive deficits in methamphetamine users: how strong is the evidence? Pharmacopsychiatry 51(6):243–250

    Article  CAS  PubMed  Google Scholar 

  • Qian H, Shang Q, Liang M, Gao B, Xiao J, Wang J, Li A, Yang C, Yin J, Chen G, Li T, Liu X (2021) MicroRNA-31-3p/RhoA signaling in the dorsal hippocampus modulates methamphetamine-induced conditioned place preference in mice. Psychopharmacology 238(11):3207–3219

    Article  CAS  PubMed  Google Scholar 

  • Qin X, Zhang X, Li P, Wang M, Yan L, Pan P, Zhang H, Hong X, Liu M, Bao Z (2021) MicroRNA-185 activates PI3K/AKT signalling pathway to alleviate dopaminergic neuron damage via targeting IGF1 in Parkinson’s disease. J Drug Target 29(8):875–883

    Article  CAS  PubMed  Google Scholar 

  • Recinto P, Samant AR, Chavez G, Kim A, Yuan CJ, Soleiman M, Grant Y, Edwards S, Wee S, Koob GF, George O, Mandyam CD (2012) Levels of neural progenitors in the hippocampus predict memory impairment and relapse to drug seeking as a function of excessive methamphetamine self-administration. Neuropsychopharmacology 37(5):1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Reijerkerk A, Lopez-Ramirez MA, van Het Hof B, Drexhage JA, Kamphuis WW, Kooij G, Vos JB, van der Pouw Kraan TC, van Zonneveld AJ, Horrevoets AJ, Prat A, Romero IA, de Vries HE (2013) MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis. J Neurosci 33(16):6857–6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reuben S, Störchel PH, Aksoy-Aksel A, Frauke K, Giordano L, Plant TD, Schratt GM (2012) Dopamine-regulated microRNA MiR-181a controls GluA2 surface expression in hippocampal neurons. Mol Cell Biol 32(3):619–632

    Article  Google Scholar 

  • Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, Tang W, Cao H (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8(42):73271–73281

    Article  PubMed  PubMed Central  Google Scholar 

  • Rybak-Wolf A, Stottmeister C, Glazar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, Herzog M, Schreyer L, Papavasileiou P, Ivanov A, Ohman M, Refojo D, Kadener S, Rajewsky N (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  • Rylander G (1972) Psychoses and the punding and choreiform syndromes in addiction to central stimulant drugs. Psychiatr Neurol Neurochir 75(3):203–212

    CAS  PubMed  Google Scholar 

  • Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465. https://doi.org/10.1002/jcp.27486

    Article  CAS  PubMed  Google Scholar 

  • Sandau US, Duggan E, Shi X, Smith SJ, Huckans M, Schutzer WE, Loftis JM, Janowsky A, Nolan JP, Saugstad JA (2020) Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: an exploratory study. J Extracell Vesicles 10(1):e12028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santillo MF (2014) Inhibition of monoamine oxidase (MAO) by α-ethylphenethylamine and N, α-diethylphenethylamine, two compounds related to dietary supplements. Food Chem Toxicol 74:265–269

    Article  CAS  PubMed  Google Scholar 

  • Schep LJ, Slaughter RJ, Beasley DM (2010) The clinical toxicology of metamfetamine. Clin Toxicol (phila) 48(7):675–694

    Article  CAS  PubMed  Google Scholar 

  • Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME (2006) A brain-specific microRNA regulates dendritic spine development. Nature 439(7074):283–289

    Article  CAS  PubMed  Google Scholar 

  • Scofield MD, Trantham-Davidson H, Schwendt M, Leong KC, Peters J, See RE, Reichel CM (2015) Failure to recognize novelty after extended methamphetamine self-administration results from loss of long-term depression in the perirhinal cortex. Neuropsychopharmacology 40(11):2526–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaerzadeh F, Streit WJ, Heysieattalab S, Khoshbouei H (2018) Methamphetamine neurotoxicity, microglia, and neuroinflammation. J Neuroinflammation 15(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharkey J, Glen KA, Wolfe S, Kuhar MJ (1988) Cocaine binding at sigma receptors. Eur J Pharmacol 149(1–2):171–174

    Article  CAS  PubMed  Google Scholar 

  • Shi JJ, Cao DN, Liu HF, Wang ZY, Lu GY, Wu N, Zhou WH, Li J (2019) Dorsolateral striatal miR-134 modulates excessive methamphetamine intake in self-administering rats. Metab Brain Dis 34(4):1029–1041

    Article  PubMed  Google Scholar 

  • Shin EJ, Dang DK, Tran TV, Tran HQ, Jeong JH, Nah SY, Jang CG, Yamada K, Nabeshima T, Kim HC (2017) Current understanding of methamphetamine-associated dopaminergic neurodegeneration and psychotoxic behaviors. Arch Pharm Res 40(4):403–428

    Article  CAS  PubMed  Google Scholar 

  • Siegel G, Saba R, Schratt G (2011) microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev 21(4):491–497

    Article  CAS  PubMed  Google Scholar 

  • Sim MS, Soga T, Pandy V, Wu YS, Parhar IS, Mohamed Z (2017) MicroRNA expression signature of methamphetamine use and addiction in the rat nucleus accumbens. Metab Brain Dis 32(6):1767–1783

    Article  CAS  PubMed  Google Scholar 

  • Su TP, London ED, Jaffe JH (1988) Steroid binding at sigma receptors suggests a link between endocrine, nervous, and immune systems. Science 240(4849):219–221

    Article  CAS  PubMed  Google Scholar 

  • Su H, Zhu L, Li J, Wang R, Liu D, Han W, Cadet JL, Chen T (2019) Regulation of microRNA-29c in the nucleus accumbens modulates methamphetamine -induced locomotor sensitization in mice. Neuropharmacology 148:160–168

    Article  CAS  PubMed  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15(5 Pt 2):4102–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki O, Hattori H, Asano M, Oya M, Katsumata Y (1980) Inhibition of monoamine oxidase by d-methamphetamine. Biochem Pharmacol 29(14):2071–2073

    Article  CAS  PubMed  Google Scholar 

  • Tan XH, Zhang KK, Xu JT, Qu D, Chen LJ, Li JH, Wang Q, Wang HJ, Xie XL (2020) Luteolin alleviates methamphetamine-induced neurotoxicity by suppressing PI3K/Akt pathway-modulated apoptosis and autophagy in rats. Food Chem Toxicol 137:111179

    Article  CAS  PubMed  Google Scholar 

  • Tanabe J, Tregellas JR, Dalwani M, Thompson L, Owens E, Crowley T, Banich M (2009) Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biol Psychiatry 65(2):160–164

    Article  PubMed  Google Scholar 

  • Teuchert-Noodt G, Dawirs RR, Hildebrandt K (2000) Adult treatment with methamphetamine transiently decreases dentate granule cell proliferation in the gerbil hippocampus. J Neural Transm (vienna) 107(2):133–143

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Kuhn DM (2005) Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. J Neurochem 92(4):790–797

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Ye X, Hou X, Yang X, Yang J, Wu C (2016) SVCT2, a potential therapeutic target, protects against oxidative stress during ethanol-induced neurotoxicity via JNK/p38 MAPKs, NF-κB and miRNA125a-5p. J Cell Biochem 96:362–373

    CAS  Google Scholar 

  • Tong J, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang LC, Sherwin A, McCluskey T, Boileau I, Kish SJ (2014) Is brain gliosis a characteristic of chronic methamphetamine use in the human? Neurobiol Dis 67:107–118

    Article  CAS  PubMed  Google Scholar 

  • World Drug Report 2021. United Nations Office on Drugs and Crime, 2021. https://www.unodc.org/unodc/data-and-analysis/wdr2021.html

  • Volz TJ, Hanson GR, Fleckenstein AE (2007) The role of the plasmalemmal dopamine and vesicular monoamine transporters in methamphetamine-induced dopaminergic deficits. J Neurochem 101(4):883–888

    Article  CAS  PubMed  Google Scholar 

  • Wallace TL, Gudelsky GA, Vorhees CV (2001) Neurotoxic regimen of methamphetamine produces evidence of behavioral sensitization in the rat. Synapse 39(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Kaufman RJ (2016) Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature 529(7586):326–335

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80(4–5):268–273

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF (2016) A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 37(33):2602–2611

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Suo L, Yang S, Zhang W (2021a) CircRNA 001372 reduces inflammation in propofol-induced neuroinflammation and neural apoptosis through PIK3CA/Akt/NF-κB by miRNA-148b-3p. J Invest Surg 34(11):1167–1177

    Article  PubMed  Google Scholar 

  • Wang Y, Wei T, Zhao W, Ren Z, Wang Y, Zhou Y, Song X, Zhou R, Zhang X, Jiao D (2021b) MicroRNA-181a is involved in methamphetamine addiction through the ERAD pathway. Front Mol Neurosci 14:667725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Shang Y, Shen T, Liu F, Xu Y, Wang H (2019) Neuroprotection of miR-214 against isoflurane-induced neurotoxicity involves the PTEN/PI3K/Akt pathway in human neuroblastoma cell line SH-SY5Y. Arch Biochem Biophys 678:108181

    Article  CAS  PubMed  Google Scholar 

  • Wuwongse S, Chang RC, Law AC (2010) The putative neurodegenerative links between depression and Alzheimer’s disease. Prog Neurobiol 91(4):362–375

    Article  CAS  PubMed  Google Scholar 

  • Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X, Yang L, Chen LL (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24(5):513–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao N, Zhang F, Zhu B, Liu C, Lin Z, Wang H, Xie WB (2018) CDK5-mediated tau accumulation triggers methamphetamine-induced neuronal apoptosis via endoplasmic reticulum-associated degradation pathway. Toxicol Lett 292:97–107

    Article  CAS  PubMed  Google Scholar 

  • Xiong K, Long L, Zhang X, Qu H, Deng H, Ding Y, Cai J, Wang S, Wang M, Liao L, Huang J, Yi CX, Yan J (2017) Overview of long non-coding RNA and mRNA expression in response to methamphetamine treatment in vitro. Toxicol in Vitro 44:1–10

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Huang E, Tai Y, Zhao X, Chen X, Chen C, Chen R, Liu C, Lin Z, Wang H, Xie WB (2017) Nupr1 modulates methamphetamine-induced dopaminergic neuronal apoptosis and autophagy through CHOP-Trib3-mediated endoplasmic reticulum stress signaling pathway. Front Mol Neurosci 10:203

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue Y, He JT, Zhang KK, Chen LJ, Wang Q, Xie XL (2019) Methamphetamine reduces expressions of tight junction proteins, rearranges F-actin cytoskeleton and increases the blood brain barrier permeability via the RhoA/ROCK-dependent pathway. Biochem Biophys Res Commun 509(2):395–401

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto BK, Bankson MG (2005) Amphetamine neurotoxicity: cause and consequence of oxidative stress. Crit Rev Neurobiol 17(2):87–117

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Han B, Zhang Y, Bai Y, Chao J, Hu G, Yao H (2018a) Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy 14(3):404–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, Huang S, Xie B, Zhang N (2018b) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3):304–315

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li L, Hong S, Zhang D, Zhou Y (2020) Methamphetamine leads to the alterations of microRNA profiles in the nucleus accumbens of rats. Pharm Biol 58(1):797–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi J, Chen B, Yao X, Lei Y, Ou F, Huang F (2019) Upregulation of the lncRNA MEG3 improves cognitive impairment alleviates neuronal damage and inhibits activation of astrocytes in hippocampus tissues in Alzheimer’s disease through inactivating the PI3K/Akt signaling pathway. J Cell Biochem 120(10):18053–18065

    Article  CAS  PubMed  Google Scholar 

  • You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Luo H, Fu W, Mattson MP (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: suppression of oxidative stress and stabilization of calcium homeostasis. Exp Neurol 155(2):302–314

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Zhu L, Shen Q, Bai X, Di X (2015) Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015:103969

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu G, Song Y, Xie C, Tao L, Wan F, Jiang L, Wang J, Tang J (2019) MiR-142a-3p and miR-155-5p reduce methamphetamine-induced inflammation: role of the target protein Peli1. Toxicol Appl Pharmacol 370:145–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Wang Q, Jing X, Zhao Y, Jiang H, Du J, Yu S, Zhao M (2016a) miR-181a is a negative regulator of GRIA2 in methamphetamine-use disorder. Sci Rep 6:35691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Shen K, Bai Y, Lv X, Huang R, Zhang W, Chao J, Nguyen LK, Hua J, Gan G, Hu G, Yao H (2016b) Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity. Autophagy 12(9):1538–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yu S, Ding Z, Song H, Wang Y, Li Y, Zhang L, Zhang L, Guo F (2021) MiRNA-494-3p regulates bupivacaine-induced neurotoxicity by the CDK6-PI3K/AKT signaling. Biomed Res Int 39(6):2007–2017

    CAS  Google Scholar 

  • Zhao Y, Zhang K, Jiang H, Du J, Na Z, Hao W, Yu S, Zhao M (2016) Decreased expression of plasma MicroRNA in patients with methamphetamine (MA) use disorder. J Neuroimmune Pharmacol 11(3):542–548

    Article  PubMed  Google Scholar 

  • Zheng L, Zhang J, Yu S, Ding Z, Song H, Wang Y, Li Y (2020) Lanthanum Chloride Causes Neurotoxicity in Rats by Upregulating miR-124 Expression and Targeting PIK3CA to Regulate the PI3K/Akt Signaling Pathway. Biomed Res Int 2020:5205142

    Google Scholar 

  • Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, Liang L, Gu J, He X, Huang S (2016) Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun 7:11215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Xiao S, Li C, Chen Z, Zhu C, Zhou Q, Ou J, Li J, Chen Y, Luo C, Mo Z (2021) Extracellular vesicle-encapsulated miR-183-5p from rhynchophylline-treated H9c2 cells protect against methamphetamine-induced dependence in mouse brain by targeting NRG1. Evid Based Complement Alternat Med 2021:2136076

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Fu H, Wu Y, Zheng X (2013) Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 56(10):876–885

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Chen S, Li T, Dang Y, Chen T (2015a) Chronic methamphetamine regulates the expression of MicroRNAs and putative target genes in the nucleus accumbens of mice. J Neurosci Res 93(10):1600–1610

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Zhu J, Liu Y, Chen Y, Li Y, Huang L, Chen S, Li T, Dang Y, Chen T (2015b) Methamphetamine induces alterations in the long non-coding RNAs expression profile in the nucleus accumbens of the mouse. BMC Neurosci 16:18

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Guangdong Province (Grant Number: 2021A1515010909 and 2021A1515110414), National Natural Science Foundation of China (Grant Number: 82271930 and 82271536), Postdoctoral Science Foundation of China (Grant Number: 2021M701609) and Medical Science and Technology Foundation of Guangdong Province (Grant Number: B2022019).

Author information

Authors and Affiliations

Authors

Contributions

LX and XC wrote the draft and revised it. XC and DQ designed and supervised the study. LX, LL, QC and YH collected the data and designed the figures and tables. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xuebing Chen or Dongfang Qiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Li, L., Chen, Q. et al. The Role of Non-coding RNAs in Methamphetamine-Induced Neurotoxicity. Cell Mol Neurobiol 43, 2415–2436 (2023). https://doi.org/10.1007/s10571-023-01323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-023-01323-x

Keywords

Navigation