Skip to main content

Advertisement

Log in

Epigenetic Changes and Its Intervention in Age-Related Neurodegenerative Diseases

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Epigenetic mechanisms involving the modulation of gene activity without modifying the DNA bases are reported to have lifelong effects on mature neurons in addition to their impact on synaptic plasticity and cognition. Histone methylation and acetylation are involved in synchronizing gene expression and protein function in neuronal cells. Studies have demonstrated in experimental models of neurodegenerative disorders that manipulations of these two mechanisms influence the susceptibility of neurons to degeneration and apoptosis. In Alzheimer’s disease (AD), the expression of presenilin 1 (PSEN1) is markedly increased due to decreased methylation at CpG sites, thus promoting the accumulation of toxic amyloid-β (Aβ) peptide. In Parkinson’s disease (PD), dysregulation of α-synuclein (SNCA) expression is presumed to occur via aberrant methylation at CpG sites, which controls the activation or suppression of protein expression. Mutant Huntingtin (mtHTT) alters the activity of histone acetyltransferases (HATs), causing the dysregulation of transcription observed in most Huntington’s disease (HD) cases. Folate, vitamin B6, vitamin B12, and S-adenosylmethionine (SAM) are vital cofactors involved in DNA methylation modification; 5-azacytidine (AZA) is the most widely studied DNA methyltransferase (DNMT) inhibitor, and dietary polyphenols are DNMT inhibitors in vitro. Drug intervention is believed to reverse the epigenetic mechanisms to serve as a regulator in neuronal diseases. Nevertheless, the biochemical effect of the drugs on brain function and the underlying mechanisms are not well understood. This review focuses on further discussion of therapeutic targets, emphasizing the potential role of epigenetic factors including histone and DNA modifications in the diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

PSEN1:

Presenilin 1

PD:

Parkinson’s disease

SNCA:

α-Synuclein

mtHTT:

Mutant Huntingtin

HD:

Huntington’s disease

HDACs:

Histone deacetylases

SAM:

S-Adenosylmethionine

AZA:

5-Azacytidine

DNMT:

DNA methyltransferase

HTT:

Huntingtin

TF:

Transcription factor

CREB:

Cyclic adenosine monophosphate response element-binding protein

CBP:

CREB binding protein

HATs:

Histone acetyltransferases

FDA:

Food and Drug Administration

ASD:

Autism spectrum disorder

CGIs:

CpG islands

HHCys:

Hyperhomocysteinemia

NFTs:

Neurofibrillary tangles

PP2A:

Protein phosphatase 2A

SVs:

Synaptic vesicles

LRRK2:

Leucine-rich repeat kinase 2

CNV:

Copy number variant

ChIP-Seq:

Chromatin immunoprecipitation sequencing

HDACi:

Histone deacetylase inhibitors

BBB:

Blood–brain barrier

VA:

Valproic acid

FA:

Folic acid

AzaC:

Azacitidine

DNMTi:

DNMT inhibitors

MDS:

Myelodysplastic syndrome

NMDA:

N-Methyl-D-aspartate

T6FA:

Tacrine-6-ferulic acid

NPI:

Neuropsychiatric inventory

ADL:

Alzheimer’s Disease Cooperative Study-Activities of Daily Living

DRTs:

Dopamine replacement therapies

ICDs:

Impulse control disorders

5-aza-dC:

5-Aza-2′-deoxycytidine

RAR-β2 :

Retinoic acid receptor-β2

ATRA:

All-trans-retinoic acid

SPB:

Sodium phenylbutyrate

SAHA:

Suberoylanilide hydroxamic acid

BDNF:

Brain-derived neurotrophic factor

References

  • Abel T, Zukin RS (2008) Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8(1):57–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adwan L, Zawia NH (2013) Epigenetics: a novel therapeutic approach for the treatment of Alzheimer’s disease. Pharmacol Ther 139(1):41–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ambermoon P, Carter A, Hall WD, Dissanayaka NN, O’Sullivan JD (2011) Impulse control disorders in patients with Parkinson’s disease receiving dopamine replacement therapy: evidence and implications for the addictions field. Addiction 106(2):283–293

    PubMed  Google Scholar 

  • Antequera D, Bolos M, Spuch C, Pascual C, Ferrer I, Fernandez-Bachiller MI, Rodríguez-Franco MI, Carro E (2012) Effects of a tacrine-8-hydroxyquinoline hybrid (IQM-622) on Aβ accumulation and cell death: involvement in hippocampal neuronal loss in Alzheimer’s disease. Neurobiol Dis 46(3):682–691

    CAS  PubMed  Google Scholar 

  • Araki T, Wake R, Miyaoka T, Kawakami K, Nagahama M, Furuya M, Limoa E, Liaury K, Hashioka S, Murotani K (2014) The effects of combine treatment of memantine and donepezil on Alzheimer’s disease patients and its relationship with cerebral blood flow in the prefrontal area. Int J Geriatr Psychiatry 29(9):881–889

    PubMed  Google Scholar 

  • Arikawa M, Kakinuma Y, Handa T, Yamasaki F, Sato T (2011) Donepezil, anti-Alzheimer’s disease drug, prevents cardiac rupture during acute phase of myocardial infarction in mice. PLoS ONE 6(7):20629

    Google Scholar 

  • Aristizabal MJ, Anreiter I, Halldorsdottir T, Odgers CL, McDade TW, Goldenberg A, Mostafavi S, Kobor MS, Binder EB, Sokolowski MB (2019) Biological embedding of experience: a primer on epigenetics. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1820838116

    Article  PubMed  PubMed Central  Google Scholar 

  • Armstrong RJ, Barker RA (2001) Neurodegeneration: a failure of neuroregeneration? The Lancet 358(9288):1174–1176

    CAS  Google Scholar 

  • Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman AP, Albin RL, Hu H, Rozek LS (2012) Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimer’s Dis 29(3):571–588

    CAS  Google Scholar 

  • Barthélemy NR, Bateman RJ, Hirtz C, Marin P, Becher F, Sato C, Gabelle A, Lehmann S (2020) Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimer’s Res Therapy 12(1):1–11

    Google Scholar 

  • Berson A, Nativio R, Berger SL, Bonini NM (2018) Epigenetic regulation in neurodegenerative diseases. Trends Neurosci 41(9):587–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada C-M, Kim G, Seekins S, Yager D (1996) Familial Alzheimer’s disease–linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17(5):1005–1013

    CAS  PubMed  Google Scholar 

  • Bossy-Wetzel E, Schwarzenbacher R, Lipton SA (2004) Molecular pathways to neurodegeneration. Nat Med 10(7):S2–S9

    PubMed  Google Scholar 

  • Bourgeron T (2015) From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16(9):551–563

    CAS  PubMed  Google Scholar 

  • Cacabelos R, Teijido O (2018) Epigenetic drug discovery for Alzheimer’s disease. In: Epigenetics of aging and longevity. Elsevier, New York, pp 453–495

    Google Scholar 

  • Cavallaro RA, Fuso A, Nicolia V, Scarpa S (2010) S-adenosylmethionine prevents oxidative stress and modulates glutathione metabolism in TgCRND8 mice fed a B-vitamin deficient diet. J Alzheimer’s Dis 20(4):997–1002

    CAS  Google Scholar 

  • Chan A, Paskavitz J, Remington R, Rasmussen S, Shea TB (2009) Efficacy of a vitamin/nutriceutical formulation for early-stage Alzheimer’s disease: a 1-year, open-label pilot study with an 16-month caregiver extension. Am J Alzheimer’s Dis Other Demen 23(6):571–585

    Google Scholar 

  • Chen Y, Huang X, Zhang Y-w, Rockenstein E, Bu G, Golde TE, Masliah E, Xu H (2012) Alzheimer’s β-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of β-amyloid. J Neurosci 32(33):11390–11395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheon MG, Kim W, Choi M, Kim J-E (2015) AK-1, a specific SIRT2 inhibitor, induces cell cycle arrest by downregulating Snail in HCT116 human colon carcinoma cells. Cancer Lett 356(2):637–645

    CAS  PubMed  Google Scholar 

  • Chopra V, Quinti L, Kim J, Vollor L, Narayanan KL, Edgerly C, Cipicchio PM, Lauver MA, Choi SH, Silverman RB (2012) The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep 2(6):1492–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciccarone F, Tagliatesta S, Caiafa P, Zampieri M (2018) DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Mech Ageing Dev 174:3–17

    CAS  PubMed  Google Scholar 

  • Cleveland DW, Hwo S-Y, Kirschner MW (1977) Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol 116(2):227–247

    CAS  PubMed  Google Scholar 

  • Coppedè F (2014) The potential of epigenetic therapies in neurodegenerative diseases. Front Genet 5:220

    PubMed  PubMed Central  Google Scholar 

  • Curley JP, Mashoodh R, Champagne FA (2011) Epigenetics and the origins of paternal effects. Horm Behav 59(3):306–314

    PubMed  Google Scholar 

  • Davis JA, Naruse S, Chen H, Eckman C, Younkin S, Price DL, Borchelt DR, Sisodia SS, Wong PC (1998) An Alzheimer’s disease-linked PS1 variant rescues the developmental abnormalities of PS1-deficient embryos. Neuron 20(3):603–609

    CAS  PubMed  Google Scholar 

  • De Jager PL et al (2014) Alzheimer’s disease: early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat Neurosci 17(9):1156–1163

    PubMed  PubMed Central  Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391(6665):387–390

    PubMed  Google Scholar 

  • Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E (2011) α-Synuclein sequesters Dnmt1 from the nucleus a novel mechanism for epigenetic alterations in lewy body diseases. J Biol Chem 286(11):9031–9037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding H et al (2008) Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 106(5):2119–2130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5(10):981–989

    CAS  PubMed  Google Scholar 

  • Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27(13):3571–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Maarri O, Walier M, Behne F, van Üüm J, Singer H, Diaz-Lacava A, Nüsgen N, Niemann B, Watzka M, Reinsberg J (2011) Methylation at global LINE-1 repeats in human blood are affected by gender but not by age or natural hormone cycles. PLoS ONE 6(1):e16252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erichsen L, Beermann A, Arauzo-Bravo MJ, Hassan M, Dkhil MA, Al-Quraishy S, Hafiz TA, Fischer JC, Santourlidis S (2018) Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging. Saudi J Biol Sci 25(6):1220–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137(1):223S-228S

    CAS  PubMed  Google Scholar 

  • Farlow MR, Grossberg GT, Meng X, Olin J, Somogyi M (2011) Rivastigmine transdermal patch and capsule in Alzheimer’s disease: influence of disease stage on response to therapy. Int J Geriatr Psychiatry 26(12):1236–1243

    PubMed  Google Scholar 

  • Feligioni M, Tinelli C, Di Pino A, Ficulle E, Marcelli S (2019) Hyperhomocysteinemia as a risk factor and potential nutraceutical target for certain pathologies. Front Nutr 6:49

    PubMed  PubMed Central  Google Scholar 

  • Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R (2003) Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 23(28):9418–9427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S (2011) Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 32(2):187–199

    CAS  PubMed  Google Scholar 

  • Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28(1):195–204

    CAS  PubMed  Google Scholar 

  • Gardian G, Browne SE, Choi D-K, Klivenyi P, Gregorio J, Kubilus JK, Ryu H, Langley B, Ratan RR, Ferrante RJ (2005) Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington’s disease. J Biol Chem 280(1):556–563

    CAS  PubMed  Google Scholar 

  • Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501

    CAS  PubMed  Google Scholar 

  • Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A (2011) Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimer’s Dis 26(1):187–197

    CAS  Google Scholar 

  • Gräff J, Rei D, Guan J-S, Wang W-Y, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483(7388):222–226

    PubMed  PubMed Central  Google Scholar 

  • Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17(2):215

    CAS  PubMed  Google Scholar 

  • Gupta R, Ambasta RK, Kumar P (2020) Pharmacological intervention of histone deacetylase enzymes in the neurodegenerative disorders. Life Sci 243:117278

    CAS  PubMed  Google Scholar 

  • Halušková J (2010) Epigenetic studies in human diseases. Folia Biol (Praha) 56(3):83–96

    Google Scholar 

  • Hamilton ML, Van Remmen H, Drake JA, Yang H, Guo ZM, Kewitt K, Walter CA, Richardson A (2001) Does oxidative damage to DNA increase with age? Proc Natl Acad Sci 98(18):10469–10474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison IF, Dexter DT (2013) Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson’s disease? Pharmacol Ther 140(1):34–52

    CAS  PubMed  Google Scholar 

  • Hernández-Díaz S, Werler MM, Walker AM, Mitchell AA (2000) Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med 343(22):1608–1614

    PubMed  Google Scholar 

  • Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, Sathasivam K, Ghazi-Noori S, Mahal A, Lowden PA (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci 100(4):2041–2046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoeksema MA, de Winther MP (2016) Epigenetic regulation of monocyte and macrophage function. Antioxid Redox Signal 25(14):758–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Chopra V, Chopra R, Locascio JJ, Liao Z, Ding H, Zheng B, Matson WR, Ferrante RJ, Rosas HD (2011) Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc Natl Acad Sci 108(41):17141–17146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Wang B, Li X, Fu C, Wang C, Kang X (2019) α-Synuclein: a multifunctional player in exocytosis, endocytosis, and vesicle recycling. Front Neurosci 13:28

    PubMed  PubMed Central  Google Scholar 

  • Hull EE, Montgomery MR, Leyva KJ (2016) HDAC inhibitors as epigenetic regulators of the immune system: impacts on cancer therapy and inflammatory diseases. BioMed Res Int 2016:1–6

    Google Scholar 

  • Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32

    CAS  PubMed  Google Scholar 

  • Jang H, Mason JB, Choi S-W (2005) Genetic and epigenetic interactions between folate and aging in carcinogenesis. J Nutr 135(12):2967S-2971S

    CAS  PubMed  Google Scholar 

  • Jellinger K (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5(1):1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia H, Pallos J, Jacques V, Lau A, Tang B, Cooper A, Syed A, Purcell J, Chen Y, Sharma S (2012) Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington’s disease. Neurobiol Dis 46(2):351–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin B, Li Y, Robertson KD (2011) DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer 2(6):607–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Issa J-PJ, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17(10):630

    CAS  PubMed  Google Scholar 

  • Jowaed A, Schmitt I, Kaut O, Wüllner U (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30(18):6355–6359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Nigam K, Srivastava S, Tyagi A, Dang S (2020) Memantine nanoemulsion: a new approach to treat Alzheimer’s Disease. J Microencapsul 37:355–365

    CAS  PubMed  Google Scholar 

  • Kaut O, Schmitt I, Wüllner U (2012) Genome-scale methylation analysis of Parkinson’s disease patients’ brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 13(1):87–91

    CAS  PubMed  Google Scholar 

  • Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35(4):870–880

    CAS  PubMed  Google Scholar 

  • Kim T-Y, Bang Y-J, Robertson KD (2006) Histone deacetylase inhibitors for cancer therapy. Epigenetics 1(1):15–24

    Google Scholar 

  • Kim Y-I (2005) Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 135(11):2703–2709

    CAS  PubMed  Google Scholar 

  • Kruman II, Kumaravel T, Lohani A, Pedersen WA, Cutler RG, Kruman Y, Haughey N, Lee J, Evans M, Mattson MP (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 22(5):1752–1762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar H, Lim H-W, More SV, Kim B-W, Koppula S, Kim IS, Choi D-K (2012) The role of free radicals in the aging brain and Parkinson’s disease: convergence and parallelism. Int J Mol Sci 13(8):10478–10504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landles C, Bates GP (2004) Huntingtin and the molecular pathogenesis of Huntington’s disease. EMBO Rep 5(10):958–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27(32):5459–5468

    CAS  PubMed  Google Scholar 

  • Lee J, Hwang YJ, Kim KY, Kowall NW, Ryu H (2013) Epigenetic mechanisms of neurodegeneration in Huntington’s disease. Neurotherapeutics 10(4):664–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee R, Pirooznia M, Guintivano J, Ly M, Ewald E, Tamashiro K, Gould T, Moran TH, Potash JB (2015) Search for common targets of lithium and valproic acid identifies novel epigenetic effects of lithium on the rat leptin receptor gene. Transl Psychiatry 5(7):e600–e600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Lesuisse C, Xu Y, Troncoso JC, Price DL, Lee MK (2004) Stabilization of α-synuclein protein with aging and familial Parkinson’s disease-linked A53T mutation. J Neurosci 24(33):7400–7409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-z, Chen X-p, Zhao K, Bai L-m, Zhang H, Zhou X-p (2012) Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: possible mediation through enhanced autophagy. Int J Neurosci 123(2):73–79

    PubMed  Google Scholar 

  • Lilienfeld S (2002) Galantamine—a novel cholinergic drug with a unique dual mode of action for the treatment of patients with Alzheimer’s disease. CNS Drug Rev 8(2):159–176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lovrečić L, Maver A, Zadel M, Peterlin B (2013) The role of epigenetics in neurodegenerative diseases. Neurodegener Dis. https://doi.org/10.5772/54744

    Article  Google Scholar 

  • Lu H, Liu X, Deng Y, Qing H (2013) DNA methylation, a hand behind neurodegenerative diseases. Front Aging Neurosci 5:85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luchsinger JA, Mayeux R (2004) Dietary factors and Alzheimer’s disease. Lancet Neurol 3(10):579–587

    PubMed  Google Scholar 

  • Lunnon K et al (2014) Methylomic profiling implicates cortical deregulation of ANK1 in Alzheimer’s disease. Nat Neurosci 17(9):1164–1170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maraganore DM, De Andrade M, Elbaz A, Farrer MJ, Ioannidis JP, Krüger R, Rocca WA, Schneider NK, Lesnick TG, Lincoln SJ (2006) Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease. JAMA 296(6):661–670

    CAS  PubMed  Google Scholar 

  • Mastroeni D et al (2010) Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation. Neurobiol Aging 31(12):2025–2037

    CAS  PubMed  Google Scholar 

  • Matsumoto L, Takuma H, Tamaoka A, Kurisaki H, Date H, Tsuji S, Iwata A (2010) CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS ONE 5(11):15522

    Google Scholar 

  • Mattson MP (2003) Methylation and acetylation in nervous system development and neurodegenerative disorders. Ageing Res Rev 2(3):329–342

    CAS  PubMed  Google Scholar 

  • McGarvey KM, Greene E, Fahrner JA, Jenuwein T, Baylin SB (2007) DNA methylation and complete transcriptional silencing of cancer genes persist after depletion of EZH2. Can Res 67(11):5097–5102

    CAS  Google Scholar 

  • Miah I, Olde Dubbelink K, Stoffers D, Deijen J, Berendse H (2012) Early-stage cognitive impairment in Parkinson’s disease and the influence of dopamine replacement therapy. Eur J Neurol 19(3):510–516

    CAS  PubMed  Google Scholar 

  • Mielcarek M, Benn CL, Franklin SA, Smith DL, Woodman B, Marks PA, Bates GP (2011) SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLoS ONE 6(11):e27746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mierzecki A, Makarewicz-Wujec M, Kłoda K, Kozłowska-Wojciechowska M, Pieńkowski P, Naruszewicz M (2015) Influence of folic acid supplementation on coagulation, inflammatory, lipid, and kidney function parameters in subjects with low and moderate content of folic acid in the diet. Kardiologia Polska (Polish Heart J) 73(4):280–286

    Google Scholar 

  • Migliore L, Coppedè F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res/Fundam Mol Mech Mutagen 667(1–2):82–97

    CAS  Google Scholar 

  • Miranda TB, Jones PA (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213(2):384–390

    CAS  PubMed  Google Scholar 

  • Monti N, Cavallaro RA, Stoccoro A, Nicolia V, Scarpa S, Kovacs GG, Fiorenza MT, Lucarelli M, Aronica E, Ferrer I (2020) CpG and non-CpG Presenilin1 methylation pattern in course of neurodevelopment and neurodegeneration is associated with gene expression in human and murine brain. Epigenetics 15(8):781–799

    PubMed  PubMed Central  Google Scholar 

  • Nalivaeva NN, Belyaev ND, Turner AJ (2009) Sodium valproate: an old drug with new roles. Trends Pharmacol Sci 30(10):509–514

    CAS  PubMed  Google Scholar 

  • Ng CW, Yildirim F, Yap YS, Dalin S, Matthews BJ, Velez PJ, Labadorf A, Housman DE, Fraenkel E (2013) Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc Natl Acad Sci 110(6):2354–2359

    CAS  PubMed  PubMed Central  Google Scholar 

  • NICE (2018) Dementia: assessment, management and support for people living with dementia and their carers. National Institute for Health and Care Excellence, London

    Google Scholar 

  • Nutt J, Williams A, Plotkin C, Eng N, Ziegler M, Calne DB (1979) Treatment of Parkinson’s disease with sodium valproate: clinical, pharmacological, and biochemical observations. Can J Neurol Sci 6(3):337–343

    CAS  PubMed  Google Scholar 

  • Pagiatakis C, Musolino E, Gornati R, Bernardini G, Papait R (2019) Epigenetics of aging and disease: a brief overview. Aging Clin Exp Res. https://doi.org/10.1007/s40520-019-01430-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Pang M, Zhuang S (2010) Histone deacetylase: a potential therapeutic target for fibrotic disorders. J Pharmacol Exp Ther 335(2):266–272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pi R, Mao X, Chao X, Cheng Z, Liu M, Duan X, Ye M, Chen X, Mei Z, Liu P (2012) Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo. PLoS ONE 7(2):e31921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, Zhang Z, Wei S, Sun X, Chen C-H (2008) Valproic acid inhibits Aβ production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 205(12):2781–2789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Recchia A, Debetto P, Negro A, Guidolin D, Skaper SD, Giusti P (2004) α-Synuclein and Parkinson’s disease. FASEB J 18(6):617–626

    CAS  PubMed  Google Scholar 

  • Reik W (1988) Genomic imprinting: a possible mechanism for the parental origin effect in Huntington’s chorea. J Med Genet 25(12):805–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remely M, Lovrecic L, De La Garza A, Migliore L, Peterlin B, Milagro F, Martinez A, Haslberger A (2015) Therapeutic perspectives of epigenetically active nutrients. Br J Pharmacol 172(11):2756–2768

    CAS  PubMed  Google Scholar 

  • Reolon GK, Maurmann N, Werenicz A, Garcia VA, Schröder N, Wood MA, Roesler R (2011) Posttraining systemic administration of the histone deacetylase inhibitor sodium butyrate ameliorates aging-related memory decline in rats. Behav Brain Res 221(1):329–332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6(8):597–610

    CAS  PubMed  Google Scholar 

  • Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174(3):341–348

    PubMed  PubMed Central  Google Scholar 

  • Ropero S, Esteller M (2007) The role of histone deacetylases (HDACs) in human cancer. Mol Oncol 1(1):19–25

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sadri-Vakili G, Cha J-HJ (2006) Mechanisms of disease: histone modifications in Huntington’s disease. Nat Clin Pract Neurol 2(6):330–338

    CAS  PubMed  Google Scholar 

  • Safieh M, Korczyn AD, Michaelson DM (2019) ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med 17(1):1–17

    Google Scholar 

  • Salcedo-Tacuma D, Melgarejo JD, Mahecha MF, Ortega-Rojas J, Arboleda-Bustos CE, Pardo-Turriago R, Arboleda H (2019) Differential methylation levels in CpGs of the BIN1 gene in Individuals With Alzheimer disease. Alzheimer Dis Assoc Disord 33(4):321–326

    CAS  PubMed  Google Scholar 

  • Sanders HM, Lust R, Teller JK (2009) Amyloid-beta peptide Aβp3-42 affects early aggregation of full-length Aβ1-42. Peptides 30(5):849–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz-Schaeffer WJ (2010) The synaptic pathology of α-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathol 120(2):131–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma D, Sharma RK, Sharma N, Gabrani R, Sharma SK, Ali J, Dang S (2015) Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech 16(5):1108–1121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma K (2019) Cholinesterase inhibitors as Alzheimer’s therapeutics. Mol Med Rep 20(2):1479–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla S, Tekwani BL (2020) Histone deacetylases inhibitors in neurodegenerative diseases, neuroprotection and neuronal differentiation. Front Pharmacol 11:537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Ahn IS, Kang HS, Myung W, Lee Y, Woo S-y, Ku HM, Hwang T-Y, Carroll BJ, Kim DK (2014) Cognitive subdomain responses to galantamine in Alzheimer’s disease. J Nerv Ment Dis 202(3):253–259

    PubMed  Google Scholar 

  • Song Y, Ding H, Yang J, Lin Q, Xue J, Zhang Y, Chan P, Cai Y (2014) Pyrosequencing analysis of SNCA methylation levels in leukocytes from Parkinson’s disease patients. Neurosci Lett 569:85–88

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998) Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 251(3):205–208

    CAS  PubMed  Google Scholar 

  • Steffan JS, Kazantsev A, Spasic-Boskovic O, Greenwald M, Zhu Y-Z, Gohler H, Wanker EE, Bates GP, Housman DE, Thompson LM (2000) The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci 97(12):6763–6768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takaoka K, Hangaishi A, Ito A, Morioka T, Kida M, Usuki K (2014) Late hematological improvement of myelodysplastic syndrome following treatment with 5-azacitidine therapy. Intern Med 53(19):2241–2243

    PubMed  Google Scholar 

  • Tan Y-y, Wu L, Zhao Z-b, Wang Y, Xiao Q, Liu J, Wang G, Ma J-f (2014) Methylation of α-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson’s disease patients. Parkinsonism Relat Disord 20(3):308–313

    PubMed  Google Scholar 

  • Thomas P, Fenech M (2007) A review of genome mutation and Alzheimer’s disease. Mutagenesis 22(1):15–33

    CAS  PubMed  Google Scholar 

  • Tian F, Marini AM, Lipsky RH (2010) Effects of histone deacetylase inhibitor Trichostatin A on epigenetic changes and transcriptional activation of Bdnf promoter 1 by rat hippocampal neurons. Ann N Y Acad Sci 1199(1):186–193

    CAS  PubMed  Google Scholar 

  • Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8(5):355–367

    CAS  PubMed  Google Scholar 

  • van Groen T (2010) DNA methylation and Alzheimer’s disease. In: Tollefsbo T (ed) Epigenetics of aging. Springer, Berlin, pp 315–326

    Google Scholar 

  • Vetrivel KS, Zhang Y-w, Xu H, Thinakaran G (2006) Pathological and physiological functions of presenilins. Mol Neurodegener 1(1):4

    PubMed  PubMed Central  Google Scholar 

  • Vogelsberg-Ragaglia V, Schuck T, Trojanowski JQ, Lee VM-Y (2001) PP2A mRNA expression is quantitatively decreased in Alzheimer’s disease hippocampus. Exp Neurol 168(2):402–412

    CAS  PubMed  Google Scholar 

  • Voronkov M, Braithwaite SP, Stock JB (2011) Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer’s disease. Future Med Chem 3(7):821–833

    CAS  PubMed  Google Scholar 

  • Wang F, Fischhaber PL, Guo C, Tang T-S (2014) Epigenetic modifications as novel therapeutic targets for Huntington’s disease. Epigenomics 6(3):287–297

    CAS  PubMed  Google Scholar 

  • Wang SC et al (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS ONE 3(7):e2698

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang X, Li R, Yang ZF, Wang YZ, Gong XL, Wang XM (2013) A DNA methyltransferase Inhibitor, 5-Aza-2′-deoxycytidine, exacerbates neurotoxicity and upregulates Parkinson’s disease-related genes in dopaminergic neurons. CNS Neurosci Ther 19(3):183–190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang X, Liu L, Wang X (2009) HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells. Neurosci Lett 467(3):212–216

    CAS  PubMed  Google Scholar 

  • Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW (1994) Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 271(13):992–998

    CAS  PubMed  Google Scholar 

  • Wilson AG (2008) Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J Periodontol 79:1514–1519

    CAS  PubMed  Google Scholar 

  • Winner B, Kohl Z, Gage FH (2011) Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 33(6):1139–1151

    PubMed  Google Scholar 

  • Wu J-Y, Niu F-n, Huang R, Xu Y (2008) Enhancement of glutamate uptake in 1-methyl-4-phenylpyridinium-treated astrocytes by trichostatin A. NeuroReport 19(12):1209–1212

    CAS  PubMed  Google Scholar 

  • Xu X, Gammon MD, Hernandez-Vargas H, Herceg Z, Wetmur JG, Teitelbaum SL, Bradshaw PT, Neugut AI, Santella RM, Chen J (2012) DNA methylation in peripheral blood measured by LUMA is associated with breast cancer in a population-based study. FASEB J 26(6):2657–2666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Xing Y, Chen Y, Chao Y, Lin Z, Fan E, Jong WY, Strack S, Jeffrey PD, Shi Y (2006) Structure of the protein phosphatase 2A holoenzyme. Cell 127(6):1239–1251

    CAS  PubMed  Google Scholar 

  • Xu Z, Li H, Jin P (2012) Epigenetics-based therapeutics for neurodegenerative disorders. Curr Geriatr Rep 1(4):229–236

    CAS  Google Scholar 

  • Xuan A-G, Pan X-B, Wei P, Ji W-D, Zhang W-J, Liu J-H, Hong L-P, Chen W-L, Long D-H (2015) Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer’s disease. Mol Neurobiol 51(1):300–312

    CAS  PubMed  Google Scholar 

  • Yeh HH, Young D, Gelovani JG, Robinson A, Davidson Y, Herholz K, Mann DM (2013) Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington’s disease. Brain Res 1504:16–24

    CAS  PubMed  Google Scholar 

  • Yi JM, Kim TO (2015) Epigenetic alterations in inflammatory bowel disease and cancer. Intest Res 13(2):112–121

    PubMed  PubMed Central  Google Scholar 

  • Yoo DY, Kim DW, Kim MJ, Choi JH, Jung HY, Nam SM, Kim JW, Yoon YS, Choi SY, Hwang IK (2015) Sodium butyrate, a histone deacetylase Inhibitor, ameliorates SIRT2-induced memory impairment, reduction of cell proliferation, and neuroblast differentiation in the dentate gyrus. Neurol Res 37(1):69–76

    CAS  PubMed  Google Scholar 

  • Youssef EM, Lotan D, Issa J-P, Wakasa K, Fan Y-H, Mao L, Hassan K, Feng L, Lee JJ, Lippman SM (2004) Hypermethylation of the retinoic acid receptor-β2 gene in head and neck carcinogenesis. Clin Cancer Res 10(5):1733–1742

    CAS  PubMed  Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong J-S (2005) Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542

    CAS  PubMed  Google Scholar 

  • Zhong N, Weisgraber KH (2009) Understanding the basis for the association of apoE4 with Alzheimer’s disease: opening the door for therapeutic approaches. Curr Alzheimer Res 6(5):415–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X-W, Gustafsson J-Å, Tanila H, Bjorkdahl C, Liu R, Winblad B, Pei J-J (2008) Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A. Neurobiology of disease 31(3):386–394

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review is part of a research study financially supported by the Ministry of Higher Education Grant (FRGS/1/2019/SKK08/UKM/01/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Makpol.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd Murshid, N., Aminullah Lubis, F. & Makpol, S. Epigenetic Changes and Its Intervention in Age-Related Neurodegenerative Diseases. Cell Mol Neurobiol 42, 577–595 (2022). https://doi.org/10.1007/s10571-020-00979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00979-z

Keywords

Navigation