Skip to main content

Advertisement

Log in

CeO2@PAA-LXW7 Attenuates LPS-Induced Inflammation in BV2 Microglia

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Microglia are the inherent immune effector cells in the central nervous system (CNS), are activated rapidly when the CNS is stimulated by ischaemia, infection, injury, etc. and participate in and aggravate the development of inflammatory reactions in the CNS. During the process of microglial activation, inflammatory factors such as TNF-α and IL-1β and an abundance of reactive oxygen species (ROS)/reactive nitrogen species (RNS), are released by damaged nerve cells. LXW7 is a small molecule peptide and specifically binds with integrin αvβ3. Cerium oxide nanoparticles (nanoceria) are strong free radical scavengers and are widely used in many studies. In this research, a model of inflammation was established using lipopolysaccharide (LPS) to induce BV2 microglia activation, and the effects of CeO2@PAA (synthetic nanoscale cerium oxide particles), LXW7 and CeO2@PAA-LXW7 were evaluated. We detected the expression level of inflammatory factors, the release of NO in BV2 cells and the generation of intracellular ROS. The expression levels of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) and their phosphorylated proteins were detected in BV2 microglia. We found that CeO2@PAA, LXW7 and CeO2@PAA-LXW7 all effectively inhibited the activation of BV2 microglia, reduced the production of cytokines and the release of NO and reduced the production of intracellular ROS. The three treatments all inhibited the phosphorylation of FAK and STAT3 in BV2 microglia. Regarding these effects, CeO2@PAA-LXW7 was more effective than the other two monotherapies. Our data indicate that CeO2@PAA, LXW7 and CeO2@PAA-LXW7 can exert a neuroprotective function by inhibiting the inflammatory response of LPS-induced BV2 microglia. LXW7 may inhibit the activation of FAK and STAT3 signals in combination with integrin αvβ3 to restrain neuroinflammation and the antioxidative stress effect of cerium oxide; hence, CeO2@PAA-LXW7 can exert a more robust anti-inflammatory and neuroprotective effect via synergistically suppressing the ability of LXW7 to influence the integrin pathway and the free radical-scavenging ability of CeO2@PAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amantea D, Certo M, Russo R, Bagetta G, Corasaniti MT, Tassorelli C (2014) Early reperfusion injury is associated to MMP2 and IL-1β elevation in cortical neurons of rats subjected to middle cerebral artery occlusion. Neuroscience 277:755

    Article  CAS  Google Scholar 

  • Becchetti A, Arcangeli A (2010) Integrins and ion channels in cell migration: implications for neuronal development, wound healing and metastatic spread. Adv Exp Med Biol 674:107

    Article  CAS  Google Scholar 

  • Cabodi S et al (1999) Integrins and signal transduction. Curr Opin Hematol 6:37

    Article  Google Scholar 

  • Celardo I, Nicola MD, Mandoli C, Pedersen JZ, Traversa E, Ghibelli L (2011) Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 5:4537–4549

    Article  CAS  Google Scholar 

  • Chan CS, Weeber EJ, Kurup S, Sweatt JD, Davis RL (2003) Integrin requirement for hippocampal synaptic plasticity and spatial memory. J Neurosci 23:7107–7116 The Official Journal of the Society for Neuroscience

    Article  CAS  Google Scholar 

  • Chan CS, Weeber EJ, Zong L, Fuchs E, Sweatt JD, Davis RL (2006) β1-Integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. J Neurosci 26:223 The Official Journal of the Society for Neuroscience

    Article  CAS  Google Scholar 

  • Chen HC, Guan JL (1996) The association of focal adhesion kinase with a 200-kDa protein that is tyrosine phosphorylated in response to platelet-derived growth factor. FEBS J 235:495–500

    CAS  Google Scholar 

  • Chen WT, Shih TT, Chen RC, Tu SY, Hsieh WY, Yang PC (2012) Integrin αvβ3-targeted dynamic contrast-enhanced magnetic resonance imaging using a gadolinium-loaded polyethylene gycol-dendrimer-cyclic RGD conjugate to evaluate tumor angiogenesis and to assess early antiangiogenic treatment response in a mouse xenogr. Mol Imaging 11:286

    Article  CAS  Google Scholar 

  • Clark A, Zhu A, Sun K, Petty HR (2011) Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis. J Nanoparticle Res 13:5547–5555. https://doi.org/10.1007/s11051-011-0544-3

    Article  CAS  Google Scholar 

  • Diao Y et al (2012) Designed synthetic analogs of the α-helical peptide temporin-La with improved antitumor efficacies via charge modification and incorporation of the integrin αvβ3 homing domain. J Pept Sci 18:476–486 An Official Publication of the European Peptide Society

    Article  CAS  Google Scholar 

  • Dinapoli VA et al (2010) Age exaggerates proinflammatory cytokine signaling and truncates signal transducers and activators of transcription 3 signaling following ischemic stroke in the rat. Neuroscience 170:633–644

    Article  CAS  Google Scholar 

  • Esch F et al (2005) Chemistry: electron localization determines defect formation on ceria substrates. Science 309:752

    Article  CAS  Google Scholar 

  • Estevez AY et al (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51:1155–1163. https://doi.org/10.1016/j.freeradbiomed.2011.06.006

    Article  CAS  PubMed  Google Scholar 

  • Fang T, Zhou D, Lu L, Tong X, Wu J, Yi L (2016) LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats. Braz J Med Biol Res 49:e5287. https://doi.org/10.1590/1414-431X20165287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y et al (2015) Enhanced antitumor efficacy by cyclic RGDyK-conjugated and paclitaxel-loaded pH-responsive polymeric micelles. Acta Biomater 23:127–135

    Article  CAS  Google Scholar 

  • Goodman SL, Picard M (2012) Integrins as therapeutic targets. Trends Pharmacol Sci 33:405–412. https://doi.org/10.1016/j.tips.2012.04.002

    Article  CAS  PubMed  Google Scholar 

  • Hao D et al (2017) Discovery and characterization of a potent and specific peptide ligand targeting endothelial progenitor cells and endothelial cells for tissue regeneration. ACS Chem Biol 12:1075–1086. https://doi.org/10.1021/acschembio.7b00118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haubner R, Gratias R, Diefenbach B, Goodman SL, Jonczyk A, Kessler H (1996) Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J Am Chem Soc 118(32):7461–7472

    Article  CAS  Google Scholar 

  • Huang C, Ma R, Sun S, Wei G, Fang Y, Liu R, Li G (2008) JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. J Neuroimmunol 204:118

    Article  CAS  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673

    Article  CAS  Google Scholar 

  • Jeon CM et al (2014) Siegesbeckia glabrescens attenuates allergic airway inflammation in LPS-stimulated RAW 264.7 cells and OVA induced asthma murine model. Int Immunopharmacol 22:414

    Article  CAS  Google Scholar 

  • Jia J et al (2018) Neuroprotective effect of CeO2 @PAA-LXW7 against H2O2-induced cytotoxicity in NGF-differentiated PC12 cells. Neurochem Res 43:1–15

    Article  CAS  Google Scholar 

  • Jin YC et al (2015) Intranasal delivery of RGD motif-containing osteopontin icosamer confers neuroprotection in the postischemic brain via α v β 3 integrin binding. Mol Neurobiol 53(8):5652–5663

    Article  Google Scholar 

  • Justicia C, Gabriel C, Planas AM (2000) Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia 30:253–270

    Article  CAS  Google Scholar 

  • Kerrisk ME, Koleske AJ (2013) Arg kinase signaling in dendrite and synapse stabilization pathways: memory, cocaine sensitivity, and stress. Int J Biochem Cell Biol 45:2496–2500. https://doi.org/10.1016/j.biocel.2013.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krady JK, Basu A, Levison SW, Milner RJ (2002) Differential expression of protein tyrosine kinase genes during microglial activation. Glia 40:11

    Article  Google Scholar 

  • Kramar EA, Bernard JA, Gall CM, Lynch G (2003) Integrins modulate fast excitatory transmission at hippocampal synapses. J Biol Chem 278:10722–10730. https://doi.org/10.1074/jbc.M210225200

    Article  PubMed  Google Scholar 

  • Li C et al (2014) Cytotoxicity of ultrafine monodispersed nanoceria on human gastric cancer cells. J Biomed Nanotechnol 10:1231

    Article  CAS  Google Scholar 

  • Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481

    Article  CAS  Google Scholar 

  • Liu J et al (2016) High glucose regulates LN expression in human liver sinusoidal endothelial cells through ROS/integrin αvβ3 pathway. Environ Toxicol Pharmacol 42:231

    Article  CAS  Google Scholar 

  • Mazalouskas M, Jessen T, Varney S, Sutcliffe JS, Veenstravanderweele J Jr, Cook EH Jr, Carneiro AM (2015) Integrin β3 haploinsufficiency modulates serotonin transport and antidepressant-sensitive behavior in mice. Neuropsychopharmacology 40:2015 Official Publication of the American College of Neuropsychopharmacology

    Article  CAS  Google Scholar 

  • Miranti CK, Leng L, Maschberger P, Brugge JS, Shattil SJ (1998) Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr Biol 8:1289

    Article  CAS  Google Scholar 

  • Nishimura SL, Boylen KP, Einheber S, Milner TA, Ramos DM, Pytela R (1998) Synaptic and glial localization of the integrin alphavbeta8 in mouse and rat brain. Brain Res 791:271–282

    Article  CAS  Google Scholar 

  • Niu J, Azfer A, Rogers L, Wang X, Kolattukudy P (2007) Cardioprotective effects of cerium oxide nanoparticles in a transgenic murine model of cardiomyopathy. Cardiovasc Res 73:549–559. https://doi.org/10.1016/j.cardiores.2006.11.031

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Toia GV, Colletta K, Bradaric BD, Carvey PM, Hendey B (2011) An angiogenic inhibitor, cyclic RGDfV, attenuates MPTP-induced dopamine neuron toxicity. Exp Neurol 231:160

    Article  CAS  Google Scholar 

  • Pirmohamed T et al (2010) Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun (Camb) 46:2736–2738. https://doi.org/10.1039/b922024k

    Article  CAS  Google Scholar 

  • Planas AM, Soriano MA, Berruezo M, Justicia C, Estrada A, Pitarch S, Ferrer I (1996) Induction of Stat3, a signal transducer and transcription factor, in reactive microglia following transient focal cerebral ischaemia. Eur J Neurosci 8:2612–2618

    Article  CAS  Google Scholar 

  • Pourkhalili N et al (2011) Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diabetes 2:204–210. https://doi.org/10.4239/wjd.v2.i11.204

    Article  PubMed  PubMed Central  Google Scholar 

  • Pozo K, Cingolani LA, Bassani S, Laurent F, Passafaro M, Goda Y (2012) β3 integrin interacts directly with GluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proc Natl Acad Sci USA 109:1323

    Article  CAS  Google Scholar 

  • Robinson RD, Spanier JE, Zhang F, Chan S-W, Herman IP (2002) Visible thermal emission from sub-band-gap laser excited cerium dioxide particles. J Appl Phys 92:1936–1941. https://doi.org/10.1063/1.1494130

    Article  CAS  Google Scholar 

  • Schäbitz WR et al (2003) Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34:745–751

    Article  Google Scholar 

  • Scheiffele P, Fan J, Choih J, Fetter R, Serafini T (2000) Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101:657–669

    Article  CAS  Google Scholar 

  • Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91. https://doi.org/10.1016/j.bbrc.2006.01.129

    Article  CAS  PubMed  Google Scholar 

  • Suzuki S, Tanaka K, Nogawa S, Dembo T, Kosakai A, Fukuuchi Y (2001) Phosphorylation of signal transducer and activator of transcription-3 (Stat3) after focal cerebral ischemia in rats. Exp Neurol 170:63–71

    Article  CAS  Google Scholar 

  • Takeuchi Y, Suzawa M, Kikuchi T, Nishida E, Fujita T, Matsumoto T (1997) Differentiation and transforming growth factor-beta receptor down-regulation by collagen-α2β1 integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. J Biol Chem 272:29309

    Article  CAS  Google Scholar 

  • Thameem Dheen S, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  Google Scholar 

  • Tuttolomondo A, Pecoraro R, Pinto A (2014) Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des Dev Ther 8:2221

    Article  CAS  Google Scholar 

  • Visavadiya NP et al (2016) Integrin-FAK signaling rapidly and potently promotes mitochondrial function through STAT3. Cell Commun Signal 14:32

    Article  Google Scholar 

  • Wang Y et al (2016) Optimization of RGD-containing cyclic peptides against αγβ3 integrin. Mol Cancer Ther 15:232–240. https://doi.org/10.1158/1535-7163.MCT-15-0544

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen H, Sun Y, Wan Y, Wang F, Jia B, Su X (2013) Imaging integrin α(v)β(3) positive glioma with a novel RGD dimer probe and the impact of antiangiogenic agent (Endostar) on its tumor uptake. Cancer Lett 335:75–80

    Article  CAS  Google Scholar 

  • Xiao W et al (2010) The use of one-bead one-compound combinatorial library technology to discover high-affinity αγβ3 integrin and cancer targeting arginine-glycine-aspartic acid ligands with a built-in handle. Mol Cancer Ther 9:2714–2723. https://doi.org/10.1158/1535-7163.MCT-10-0308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CS, Wang ZF, Huang XD, Dai LM, Cao CJ, Li ZQ (2015) Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J Transl Med 13:1–11

    Article  Google Scholar 

  • Yasuda J, Okada M, Yamawaki H (2017) T3 peptide, an active fragment of tumstatin, inhibits H2O2-induced apoptosis in H9c2 cardiomyoblasts. Eur J Pharmacol 807:64–70

    Article  CAS  Google Scholar 

  • Zhang T et al (2018) Combination therapy with LXW7 and ceria nanoparticles protects against acute cerebral ischemia/reperfusion injury in rats. Curr Med Sci 38:144–152. https://doi.org/10.1007/s11596-018-1858-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Basic Research Project of Peking University Shenzhen Hospital (JCYJ2018012), the Health and Family Planning Commission of Shenzhen Municipality Fund (SZSM201812096) and the Beijing Key Laboratory (BZ0250). The drug synthesis process was supported by the Inner Mongolia University Startup Fund Project (21300-5145152), the Inner Mongolia Education Department Key Project (NJZZ16015) and the Inner Mongolia Natural Science Foundation (2016MS0216).

Author information

Authors and Affiliations

Authors

Contributions

LY designed the study. CL synthesized the drugs. JJ, TZ and SP performed the studies. JS and QX assisted in part of the experiment. JJ analysed the data and wrote the paper. YH and LY edited the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yining Huang or Li Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, J., Li, C., Zhang, T. et al. CeO2@PAA-LXW7 Attenuates LPS-Induced Inflammation in BV2 Microglia. Cell Mol Neurobiol 39, 1125–1137 (2019). https://doi.org/10.1007/s10571-019-00707-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-019-00707-2

Keywords

Navigation