Skip to main content
Log in

Combination Therapy with LXW7 and Ceria Nanoparticles Protects against Acute Cerebral Ischemia/Reperfusion Injury in Rats

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Ischemia/reperfusion is known to greatly increase oxidative stress in the penumbra, which results in brain damage. Integrin αvβ3 is selectively up-regulated with ischemic injury to the brain and remains elevated throughout reperfusion. We determined whether or not a new compound biotinylated-LXW7-ceria nanoparticle (CeNP) (bLXW7-CeNP) plays a role in brain protection in the rat model of middle cerebral artery occlusion/reperfusion and shows better effects than CeNPs alone in improving the outcomes of focal oxidative stress and apoptosis more effectively. Male Sprague-Dawley rats were subjected to focal cerebral ischemia for 2 h followed by a 24-h reperfusion. Drug treatment was intravenously administered via the caudal vein 1 h after occlusion. Rats were randomly divided into the following 4 groups: bLXW7-CeNP treatment group (0.5 mg/kg); CeNP treatment group (0.5 mg/kg); control saline group; and sham group. Brains were harvested 24 h after reperfusion, and the neurologic deficit scores, infarction volume, blood-brain barrier (BBB) disruption, and the level of oxidative stress and apoptosis were determined. Results showed that the bLXW7-CeNP and CeNP treatments could improve neurologic deficit scores, infarction volume, BBB disruption, and the level of oxidative stress and apoptosis. Compound bLXW7-CeNP treatment exhibited better effects than CeNp treatment and showed remarkable statistical differences in the infarction volume, the degree of BBB breakdown, the apoptosis and oxidative stress, apart from neurologic deficit scores. Thus, we concluded that bLXW7-CeNP protects against acute cerebral ischemia/reperfusion injury. BLXW7, as a ligand of integrin αvβ3, may be able to effectively localize the anti-oxidant CeNPs to the ischemic penumbra region, which may provide more adequate opportunities for CeNPs to exert anti-oxidative stress effects and subsequently reduce apoptosis in acute cerebral ischemia/reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caplan LR, HonFK. Clinical diagnosis of patients with cerebrovascular disease. Prim Care, 2004, 31:95–109

    Article  PubMed  Google Scholar 

  2. Aronowski J, Strong R, Grotta JC. Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cereb Blood Flow Metab, 1997, 17(10): 1048–10 56

    Article  PubMed  CAS  Google Scholar 

  3. Murin R, Drgova A, Kaplan P, et al. Ischemia/reperfusion-induced oxidative stress causes structural changes of brain membrane proteins and lipids. Gen Physiol Biophys, 2001,20(4):431–438

    PubMed  CAS  Google Scholar 

  4. Allen CL, Bayraktutan U. Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int J Stroke, 2009, 4(6): 461–470

    Article  PubMed  CAS  Google Scholar 

  5. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab, 2001, 21(1): 2–14

    Article  PubMed  CAS  Google Scholar 

  6. Kim CK, Kim T, Choi IY, et al. Ceria nanoparticles that can protect against ischemic stroke. Angew Chem Int Ed Engl, 2012, 51(44): 11039–11043

    Article  PubMed  CAS  Google Scholar 

  7. Qi X, Zhou R, Liu Y, et al. Trans-cinnamaldehyde protected PC12 cells against oxygen and glucose deprivation/reperfusion (OGD/R)-induced injury via anti-apoptosis and anti-oxidative stress. Mol Cell Biochem, 2016,421(l-2): 67–74

    Article  PubMed  CAS  Google Scholar 

  8. Wang CP, Shi YW, Tang M, et al. Isoquercetinameliorates cerebral impairment in focal ischemia through anti-oxidative, anti-inflammatory, and anti-apoptotic effects in primary culture of rat hippocampal neurons and hippocampal CA1 region of rats. Mol Neurobi-ol, 2017, 54(3): 2126–2142

    Article  CAS  Google Scholar 

  9. Wang B, Tian S, Wang J, et al. Intraperitoneal administration of thioredoxin decreases brain damage from ischemic stroke. Brain Res, 2015, 1615:89–97

    Article  PubMed  CAS  Google Scholar 

  10. Heckert EG, Karakoti AS, Seal S, et al. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008, 29(18): 2705–2709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Korsvik C, Patil S, Seal S, et al. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun, 2007(10): 1056–1058

    Article  CAS  Google Scholar 

  12. Pirmohamed T, Dowding JM, Singh S, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun, 2010, 46(16): 2736–2738

    Article  CAS  Google Scholar 

  13. Singh S, Dosani T, Karakoti AS, et al. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials, 2011, 32(28): 6745–6753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nelson BC, Johnson ME, Walker ML, et al. Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants (Basel), 2016,5(2): doi:10.3390/ antiox5020015.

    Google Scholar 

  15. Kwon HJ, Cha MY, Kim D, et al. Mitochondria-targeting ceria nanoparticles as antioxidants for Alzheimer's disease. ACS Nano, 2016, 10(2): 2860–2870

    Article  PubMed  CAS  Google Scholar 

  16. Schubert D, Dargusch R, Raitano J, et al. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun, 2006, 342(1): 86–91

    Article  PubMed  CAS  Google Scholar 

  17. Heckman KL, DeCoteau W, Estevez A, et al. Custom cerium oxide nanoparticles protect against a free radical mediated autoimmune degenerative disease in the brain. ACS Nano, 2013, 7(12): 10582–10596

    Article  PubMed  CAS  Google Scholar 

  18. Zhao G, Zhang W, Li L, et al. Pinocembrin protects the brain against ischemia-reperfusion injury and reverses the autophagy dysfunction in the penumbra area. Molecules, 2014, 19(10): 15786–15798

    Article  PubMed  CAS  Google Scholar 

  19. Burnett CA, Xie J, Quijano J, et al. Synthesis, in vitro, and in vivo characterization of an integrin alpha( v)beta(3)-targeted molecular probe for optical imaging of tumor. Bioorg Med Chem, 2005, 13(11): 3763–3771

    Article  PubMed  CAS  Google Scholar 

  20. Okada Y, Copeland BR, Hamann GF, et al. Integrin alpha v beta3 is expressed in selected microvessels after focal cerebral ischemia. Am J Pathol, 1996, 149(1): 37–44

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Abumiya T, Lucero J, Heo JH, et al. Activated microvessels express vascular endothelial growth factor and integrin alpha(v)beta3 during focal cerebral ischemia. J Cereb Blood Flow Metab, 1999, 19(9): 1038–1050

    Article  PubMed  CAS  Google Scholar 

  22. Xiao W, Wang Y, Lau EY, et al. The use of onebead one-compound combinatorial library technology to discover high-affinity alpha(v)beta3 integrin and cancer targeting arginine-glycine-aspartic acid ligands with a built-in handle. Mol Cancer Ther, 2010, 9(10): 2714–2723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Culmsee C, Junker V, Wolz P, et al. Lubeluzole protects hippocampal neurons from excitotoxicity in vitro and reduces brain damage caused by ischemia. Eur J Pharmacol, 1998, 342(2-3): 193–201

    Article  PubMed  CAS  Google Scholar 

  24. Fang T, Zhou D, Lu L, et al. LXW7 ameliorates focal cerebral ischemia injury and attenuates inflammatory responses in activated microglia in rats. Braz J Med Biol Res, 2016,49(9): e5287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 1989, 20(1): 84–91

    Article  PubMed  CAS  Google Scholar 

  26. Ceulemans AG, Zgavc T, Kooijman R, et al. Mild hypothermia causes differential, time-dependent changes in cytokine expression and gliosis following endothelin-1-induced transient focal cerebral ischemia. J Neuroinflammation, 2011,8:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Ashwal S, Tone B, Tian HR, et al. Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfiision. Stroke, 1998, 29(5): 1037–1046,1047

    Article  PubMed  CAS  Google Scholar 

  28. Paxinos G, Watson C. The rat brain in stereotaxic coor-dinates: hard cover edition. San Diego: Academic press, 2006

    Google Scholar 

  29. Han SZ, Wang G, Li ZY, et al. The number of microglia in penumbra following focal cerebral ischemia in rats and its significance observed by confocal laser microscopy. Stroke Vase Neurol (Chinese), 2010(05): 399–403

    Google Scholar 

  30. Chen J, Li Y, Wang L, et al. Therapeutic benefit of in-travenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke, 2001, 32(4): 1005–1011

    Article  PubMed  CAS  Google Scholar 

  31. Thompson B J, Ronaldson PT. Drug delivery to the is-chemic brain. Adv Pharmacol, 2014, 71:165–202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lochhead JJ, McCaffrey G, Quigley CE, et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation. J Cereb Blood Flow Metab, 2010, 30(9): 1625–1636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Schreibelt G, Kooij G, Reijerkerk A, et al. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J, 2007, 21(13): 3666–3676

    Article  PubMed  CAS  Google Scholar 

  34. Fabian RH, DeWitt DS, Kent TA. In vivo detection of superoxide anion production by the brain using a cytochrome c electrode. J Cereb Blood Flow Metab, 1995, 15(2): 242–247

    Article  PubMed  CAS  Google Scholar 

  35. Zhao Y, Patzer A, Herdegen T, et al. Activation of cerebral peroxisome proliferator-activated receptors gamma promotes neuroprotection by attenuation of neuronal cyclooxygenase-2 overexpression after focal cerebral ischemia in rats. FASEB J, 2006, 20(8): 1162–1175

    Article  PubMed  CAS  Google Scholar 

  36. Aksenova MV, Aksenov MY, Mactutus CF, et al. Cell culture models of oxidative stress and injury in the central nervous system. Curr Neurovasc Res, 2005,2(1): 73–89

    Article  PubMed  CAS  Google Scholar 

  37. Rakhit R, Cunningham P, Furtos-Matei A, et al. Oxi dation-induced misfolding and aggregation of superoxide dismutase and its implications for amyotrophic lateral sclerosis. J Biol Chem, 2002, 277(49): 47551–47556

    Article  PubMed  CAS  Google Scholar 

  38. Bar-Or D, Bar-Or R, Rael LT, et al. Oxidative stress in severe acute illness. Redox Biol, 2015, 4:340–345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sentellas S, Morales-Ibanez O, Zanuy M, et al. GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress. Toxicol In Vitro, 2014, 28(5): 1006–1015

    Article  PubMed  CAS  Google Scholar 

  40. Circu ML, Aw TY. Glutathione and apoptosis. Free Radic Res, 2008, 42(8): 689–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. James SJ, Rose S, Melnyk S, et al. Cellular and mitochondrial glutathione redox imbalance in lymphoblastoid cells derived from children with autism. FASEB J, 2009, 23(8): 2374–2383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Reddy MK, Labhasetwar V. Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J, 2009, 23(5): 1384–1395

    Article  PubMed  CAS  Google Scholar 

  43. Zheng S, Bai YY, Liu Y, et al. Salvaging brain ischemia by increasing neuroprotectant uptake via nanoagonist mediated blood brain barrier permeability enhancement. Biomaterials, 2015, 66:9–20

    Article  PubMed  CAS  Google Scholar 

  44. Peng L, Liu R, Marik J, et al. Combinatorial chemistry identifies high-affinity peptidomimetics against alpha4betal integrin for in vivo tumor imaging. Nat Chem Biol, 2006, 2(7): 381–389

    Article  PubMed  CAS  Google Scholar 

  45. Lu LQ, Fang T, Zhou D, et al. Efficiency of integrin alphavbeta3 inhibitor Cilengitide in acute cerebral ischemia in rats. Zhonghua Yi Xue Za Zhi (Chinese), 2016, 96(7): 559–564

    CAS  Google Scholar 

  46. Messe SR, Fonarow GC, Smith EE, et al. Use of tissue-type plasminogen activator before and after publication of the European Cooperative Acute Stroke Study III in Get With The Guidelines-Stroke. Circ Cardiovasc Qual Outcomes, 2012, 5(3): 321–326

    Article  PubMed  Google Scholar 

  47. Shah K, Abbruscato T. The role of blood-brain barrier transporters in pathophysiology and pharmacotherapy of stroke. Curr Pharm Des, 2014, 20(10): 1510–1522

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yi  (易 黎).

Additional information

This work was supported by grants from Shenzhen Science and Technology Innovation Committee (No. JCYJ20140415162543033), Startup Fund Project of Inner Mongolia University (No. 21300-5145152), Key Project of Education Department of Inner Mongolia (No. NJZZ16015), and the Natural Science Foundation of Inner Mongolia (No. 2016MS0216).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Li, Cy., Jia, Jj. et al. Combination Therapy with LXW7 and Ceria Nanoparticles Protects against Acute Cerebral Ischemia/Reperfusion Injury in Rats. CURR MED SCI 38, 144–152 (2018). https://doi.org/10.1007/s11596-018-1858-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1858-5

Key words

Navigation