Skip to main content
Log in

Methylene blue adsorption onto hydrogels made from different Eucalyptus dissolving pulps

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Bleached kraft pulp from Eucalyptus benthamii, E. globulus and E. nitens was purified via cold caustic extraction (CCE) with 5% and 10% (w/v) NaOH and activated with dilute acid hydrolysis (samples were coded as CCE5-H and CCE10-H, respectively) to produce dissolving-grade pulp. Hydrogels from CCE5-H and CCE10-H pulps were fabricated through the N-methylmorpholine N-oxide route and tested for methylene blue (MB) adsorption. The morphology, fiber biometry, molecular and supramolecular structure, thermal stability and swelling capacity were also investigated. A higher degree of crystallinity was observed for cellulose in CCE10-H hydrogels. CCE10-H hydrogels also resulted in denser structures with lower swelling than CCE5-H hydrogels. The experimental data for MB adsorption were fitted better to the Langmuir model, which led to estimated maximum adsorption capacities of 36–51 mg/g for CCE5-H hydrogels and 27–33 mg/g for CCE10-H hydrogels. Regarding the Eucalyptus species, hydrogels fabricated from E. nitens exhibited the highest capacities for adsorption of MB. This was attributed to the lowest crystalline fractions and crystallite sizes, and the highest kink indexes and intrinsic viscosities of E. nitens dissolving pulps, which resulted in regenerated hydrogels with highest pore coverage and water absorption capacities, and better accessibility to MB particles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144

    Article  CAS  Google Scholar 

  • Ahuja D, Dhiman S, Rattan G, Monga S, Singhal S, Kaushik A (2021) Superhydrophobic modification of cellulose sponge fabricated from discarded jute bags for oil water separation. J Environ Chem Eng 9:105063

    Article  CAS  Google Scholar 

  • Ahvenainen P, Kontro I, Svedstrom K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086

    Article  CAS  Google Scholar 

  • Belousova TA, Shablygin MV, Belousova YY, Golova LK, Papkov SP (1986) Spectrum feature of the N-methylmorpholine-N-oxide-water-cellulose system. Polym Sci 28:1115–1122

    Google Scholar 

  • Biganska O, Navard P (2009) Morphology of cellulose objects regenerated from cellulose–N-methylmorpholine N-oxide–water solutions. Cellulose 16:179–188

    Article  CAS  Google Scholar 

  • Budd J, Herrington TM (1989) Surface charge and surface area of cellulose fibres. Colloids Surf 36:273–288

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide-urea solution. Chemsuschem 1:149–154

    Article  CAS  PubMed  Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Strucutral FTIR analysis and the thermal characterization of lyocell and viscose-type fibers. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Carrillo I, Mendonça RT, Ago M, Rojas OJ (2018) Comparative study of cellulosic components isolated from different Eucalyptus species. Cellulose 25:1011–1029

    Article  CAS  Google Scholar 

  • Carrillo-Varela I, Pereira M, Mendonça RT (2018) Determination of polymorphic changes in cellulose from Eucalyptus spp. Fibres after alkalization. Cellulose 25:6831–6845

    Article  CAS  Google Scholar 

  • Carrillo-Varela I, Retamal R, Pereira M, Mendonça RT (2019) Structure and reactivity of cellulose from bleached kraft pulps of different Eucalyptus species upgraded to dissolving pulp. Cellulose 26:5731–5744

    Article  CAS  Google Scholar 

  • Cheng D, Gu J, Xu B, Yanjun L (2015) Effect of (NH4)2SO4 concentration on the pyrolysis properties of rayon fiber from bamboo. BioResources 10:8352–8363

    Article  Google Scholar 

  • Choi KH, Kim AR, Cho BU (2016) Effects of alkali swelling and beating treatments on properties of kraft pulp fibers. BioRes 11:3769–3782

    Article  CAS  Google Scholar 

  • Collier W, Kalasinsky VF, Schultz TP (1997) Infrared study of lignin: assignment of methoxyl C-H bending amnd stretching bands. Holzforschung 51:167–168

    CAS  Google Scholar 

  • Diao H, Zhang Z, Liu Y, Song Z, Zhou L, Duan Y, Zhang J (2020) Facile fabrication of carboxylated cellulose nanocrystal–MnO2 beads for high-efficiency removal of methylene blue. Cellulose 27:7053–7066

    Article  CAS  Google Scholar 

  • Dou X, Tang Y (2017) The influence of cold caustic extraction on the purity, accessibility and reactivity of dissolving- grade pulp. Chem Sel 2:11462–11468

    CAS  Google Scholar 

  • Dudley RL, Fyfe CA, Stephenson PJ, Deslandes Y, Hamper GK, Marchessault RH (1983) High-resolution carbon-13 CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose II. J Am Chem Soc 105:2469–2472

    Article  CAS  Google Scholar 

  • El-Wakil NA, Hassan ML (2008) Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. J Appl Polym Sci 109:2862–2871

    Article  CAS  Google Scholar 

  • Endo T, Aung EI, Fujii S, Hosomi S, Kimizu M, Ninomiya K, Takahashia K (2017) Investigation of accessibility and reactivity of cellulose pretreated by ionic liquid at high loading. Carbohydr Polym 176:365–373

    Article  CAS  PubMed  Google Scholar 

  • Fauziyah M, Widiyastuti W, Balgis R, Setyawan H (2019) Production of cellulose aerogels from coir fibers via an alkali–urea method for sorption applications. Cellulose 26:9583–9598

    Article  CAS  Google Scholar 

  • Fengel D (1992) Characterization of cellulose by deconvoluting the OH valency range in FTIR spectra. Holzforschung 46:283–288

    Article  CAS  Google Scholar 

  • Fengel D (1993) Influence of water on the OH valency range in deconvoluted FTIR spectra of cellulose. Holzforschung 47:103–108

    Article  CAS  Google Scholar 

  • Fink H-P, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJD, Cranston ED, Eichorn SJ, Fox DM, Hamad WY, Heux L, Jean B, Korey M, Nieh W, Ong KJ, Reid MS, Renneckar S, Roberts R, Shatkin JA, Simonsen J, Stinson-Bagby K, Wanasekara N, Youngblood J (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609

    Article  CAS  PubMed  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD (2020) Increment in evolution of cellulose crystallinity analysis. Cellulose 27:5445–5448

    Article  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  • Gao Q, Shen X, Lu X (2011) Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym 83:1253–1256

    Article  CAS  Google Scholar 

  • Gericke M, Trygg J, Fardim P (2013) Functional cellulose beads: preparation, characterization, and applications. Chem Rev 113:4812–4836

    Article  CAS  PubMed  Google Scholar 

  • Giusto LAR, Pissetti FL, Castro TS, Magalhaes F (2017) Preparation of activated carbon from sugarcane bagasse soot and methylene blue adsorption. Water Air Soil Pollut 228:249

    Article  Google Scholar 

  • Hadid M, Noukrati H, Youcef HB, Barroug A, Sehaqui H (2021) Phosphorylated cellulose for water purification: a promising material with outstanding adsorption capacity towards methylene blue. Cellulose 28:7893–7908

    Article  CAS  Google Scholar 

  • Hakansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183

    Article  CAS  Google Scholar 

  • Hakansson H, Germgard U, Sens D (2005) Influence of xylan on the degradability of laboratory kraft pulps from hardwood and reed canary grass in acid hydrolysis. Cellulose 12:621–628

    Article  CAS  Google Scholar 

  • Haque ANMA, Remadevi R, Rojas OJ, Wang X, Naebe M (2020) Kinetics and equilibrium adsorption of methylene blue onto cotton gin trash bioadsorbents. Cellulose 27:6485–6504

    Article  CAS  Google Scholar 

  • Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244:126–135

    Article  CAS  Google Scholar 

  • Isobe N, Chen X, Kim UJ, Kimura S, Wada M, Saito T, Isogai A (2013) TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent. J Hazard Mat 260:195–201

    Article  CAS  Google Scholar 

  • Kaewprasit C, Hequet E, Abidi N, Gourlot JP (1998) Application of methylene blue adsorption to cotton fiber specific surface area measurement: part I Methodology. J Cotton Sci 2:164–173

    Google Scholar 

  • Kamel S, El-Gendy AA, Hassan MA, El-Sakhawy M, Kelnar I (2020) Carboxymethyl cellulose-hydrogel embedded with modified magnetite nanoparticles and porous carbon: effective environmental adsorbent. Carbohydr Polym 242:116402

    Article  CAS  PubMed  Google Scholar 

  • Kataoka Y, Kondo T (1998) FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31:760–764

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: volume I— fundamentals and analytical methods. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • Kondo T (1997) The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4:281–292

    Article  CAS  Google Scholar 

  • Kumar PS, Palaniyappan M, Priyadharshini M, Vignesh AM, Thanjiappan A (2014) Adsorption of basic dye onto raw and surface-modified agricultural waste. Environ Prog Sustain Energy 33:87–98

    Article  Google Scholar 

  • Kumar H, Christopher LP (2017) Recent trends and developments in dissolving pulp production and application. Cellulose 24:2347–2365

    Article  CAS  Google Scholar 

  • Kumari S, Chauhan GS, Ahn JH (2016) Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions. Chem Eng J 304:728–736

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Li B, Pan Y, Zhang Q, Huang Z, Liu J, Xiao H (2019) Porous cellulose beads reconstituted from ionic liquid for adsorption of heavy metal ions from aqueous solutions. Cellulose 26:9163–9178

    Article  CAS  Google Scholar 

  • Li C, Ma H, Venkateswaran S, Hsiao BS (2020) Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chem Eng Sci 389:123458

    Article  CAS  Google Scholar 

  • Li H, Legere S, He Z, Zhang H, Li J, Yang B, Zhang S, Zhang L, Zheng L, Ni Y (2018) Methods to increase the reactivity of dissolving pulp in the viscose rayon production process: a review. Cellulose 25:3733–3753

    Article  CAS  Google Scholar 

  • Li J, Lu S, Liu F, Qiao Q, Na H, Zhu J (2021) Structure and properties of regenerated cellulose fibers based on dissolution of cellulose in a CO2 switchable solvent. ACS Sustain Chem Eng 9:4744–4754

    Article  CAS  Google Scholar 

  • Liang L, Zhang S, Goenaga GA, Meng X, Zawodzinski TA, Ragauskas AJ (2020) Chemically cross-linked cellulose nanocrystal aerogels for effective removal of cation dye. Front Chem 8:570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze MA, Wendland M, Rosenau T (2009) Cellulosic aerogels as ultra-lightweight materials. Part II: synthesis and properties. Holzforschung 63:3–11

  • Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62:129–135

    Article  CAS  Google Scholar 

  • Lin Y, Fang G, Deng Y, Shen K, Wu T, Li M (2018) Highly effective removal of methylene blue using a chemi-mechanical pretreated cellulose-based superabsorbent hydrogel. BioRes 13:8709–8722

    Article  CAS  Google Scholar 

  • Liu L, Xie PJ, Li YJ, Zhang Q, Yao JM (2016) Three-dimensional macroporous cellulose-based bioadsorbent for efficient removal of nickel ions from aqueous solution. Cellulose 23:723–736

    Article  CAS  Google Scholar 

  • Liu Z, Wang H, Liu C, Jiang Y, Yu G, Mu X, Wang X (2012) Magnetic cellulose–chitosan hydrogels prepared from ionic liquids as reusable adsorbent for removal of heavy metal ions. Chem Commun 48:7350–7352

    Article  CAS  Google Scholar 

  • Lu B, Lin Q, Yin Z, Lin F, Chen X, Huang B (2021) Robust and lightweight biofoam based on cellulose nanofibrils for high-efficient methylene blue adsorption. Cellulose 28:273–288

    Article  CAS  Google Scholar 

  • Maaloul N, Oulego P, Rendueles M, Ghorbal A, Diaz M (2020) Synthesis and characterization of eco-friendly cellulose beads for copper (II) removal from aqueous solutions. Environ Sci Pollut Res 27:23447–23463

    Article  CAS  Google Scholar 

  • Marchessault RH, Liang CY (1960) Infrared spectra of crystalline polysaccharides, III: mercerized cellulose. J Polym Sci 43:71–84

    Article  CAS  Google Scholar 

  • Meng R, Liu L, Jin Y, Luo Z, Gao H, Yao J (2019) Recyclabe carboxylated cellulose beads with tunable pore structure and size for highly efficient dye removal. Cellulose 26:8963–8969

    Article  CAS  Google Scholar 

  • Mohammed N, Grishkewich N, Waeijen HA, Berry RM, Tam KC (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydr Pol 136:1194–1202

    Article  CAS  Google Scholar 

  • Monrroy M, Ortega I, Ramırez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzyme Microb Technol 49:472–477

    Article  CAS  PubMed  Google Scholar 

  • Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Ib and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  PubMed  Google Scholar 

  • Oshima T, Sakamoto T, Ohe K, Baba Y (2014) Cellulose aerogel regenerated from ionic liquid solution for immobilized metal affinity adsorption. Carbohydr Polym 103:62–69

    Article  CAS  PubMed  Google Scholar 

  • Ozhan A, Sahin I, Kucuk MM, Saka C (2014) Preparationand characterization of activated carbon from pine cone by microwave-induced ZnCl2 activation and its effects on the adsorption of methylene blue. Cellulose 21:2457–2467

    Article  CAS  Google Scholar 

  • Palme A, Theliander H, Brelid H (2016) Acid hydrolysis of cellulosic fibres: comparison of bleached kraft pulp, dis- solving pulps and cotton textile cellulose. Carbohydr Polym 136:1281–1287

    Article  CAS  PubMed  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Popescu CM, Singurel G, Popescu MC, Vasile C, Argyropoulos DS, Willfor S (2009) Vibrational spectroscopy and X-ray diffraction methods to establish the differences between hardwood and softwood. Carbohydr Polym 77:851–857

    Article  CAS  Google Scholar 

  • Rico del Cerro DR, Koso TV, Kakko T, King AWT, Kilpelainen I (2020) Crystallinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre- treatment with tetrabutylphosphonium acetate. Cellulose 27:5545–5562

    Article  Google Scholar 

  • Rida K, Bouraoui S, Hadnine S (2013) Adsorption of methylene blue from aqueous solution by kaolin and zeolite. Appl Clay Sci 83:99–105

    Article  Google Scholar 

  • Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837

    Article  CAS  Google Scholar 

  • Rubin E, Rodriguez P, Herrero R, Cremades J, Barbara I, Sastre de Vicente ME (2005) Removal of Methylene Blue from aqueous solutions using as biosorbent Sargassum muticum: an invasive macroalga in Europe. J Chem Technol Biotechnol 80:291–298

    Article  CAS  Google Scholar 

  • Ruzene DS, Silva DP, Vicente AA, Teixeira JA, Pessoa de Amorim MT, Gonçalves AR (2009) Cellulosic films obtained from the treatment of sugarcane bagasse fibers with N-methylmorpholine-N-oxide (NMMO). App Biochem Biotechnol 154:217–226

    Article  CAS  Google Scholar 

  • Safavi-Mirmahalleh SA, Salami-Kalahi M, Roghani-Mamaqani H (2019) Effect of surface chemistry and content of nanocrystalline cellulose on removal of methylene blue from wastewater by poly(acrylic acid)/nanocrystalline cellulose nanocomposite hydrogels. Cellulose 26:5603–5619

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structure of the water-insoluble fractions. Biomacromol 5:1983–1989

    Article  CAS  Google Scholar 

  • Sangtarashani SMH, Rahmaninia M, Behrooz R, Khosravani A (2020) Lignocellulosic hydrogel from recycled old corrugated container resources using ionic liquid as a green solvent. J Environ Manage 270:110853

    Article  CAS  PubMed  Google Scholar 

  • Sayyed AJ, Deshmukh NA, Pinjari DV (2019a) A critical review of manufacturing processes used in regenerated cellulosic fibres: viscose, cellulose acetate, cuprammonium, LiCl/DMAc, ionic liquids, and NMMO based lyocell. Cellulose 26:2913–2940

    Article  CAS  Google Scholar 

  • Sayyed AJ, Gupta D, Deshmukh NA, Mohite LV, Pinjari DV (2020) Influence of intensified cellulose dissolution process on spinning and properties of lyocell fibres. Chem Eng Process 155:108063

    Article  Google Scholar 

  • Sayyed AJ, Mohite LV, Deshmukh NA, Pinjari DV (2019b) Structural characterization of cellulose pulp in aqueous NMMO solution T under the process conditions of lyocell slurry. Carbohydr Polym 206:220–228

    Article  CAS  PubMed  Google Scholar 

  • Scherrer P (1918) Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften, Göttingen

    Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36:23–40

    Article  CAS  Google Scholar 

  • Sescousse R, Gavillon R, Budtova T (2011) Aerocellulose from cellulose–ionic liquid solutions: preparation, properties and comparison with cellulose–NaOH and cellulose– NMMO routes. Carbohydr Polym 83:1766–1774

    Article  CAS  Google Scholar 

  • Shanshan G, Jianqing W, Zhengwei J (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polyme 87:1020–1025

    Article  Google Scholar 

  • Shen X, Shamshina JL, Berton P, Gurau G, Rogers RD (2016) Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chem 18:53

    Article  Google Scholar 

  • Shen X, Xie Y, Wang Q, Yi W, Shamshina JL, Rogers RD (2019) Enhanced heavy metal adsorption ability of lignocellulosic hydrogel adsorbent by the structural support effect of lignin. Cellulose 26:4005–4019

    Article  CAS  Google Scholar 

  • Skripkina T, Podgorbunskikh E, Bychkov A, Lomovsky O (2020) Sorption of methylene blue for studying the specific surface properties of biomass carbohydrates. Coatings 10:1115

    Article  CAS  Google Scholar 

  • Teow YH, Kam LM, Mohammad AW (2018) Synthesis of cellulose hydrogel for copper (II) ions adsorption. J Environ Chem Eng 6:4588–4597

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2015) Recent advances in green hydrogels from lignin: a review. Int J Biol Macromol 72:834–847

    Article  CAS  PubMed  Google Scholar 

  • Tong DS, Wu CW, Adebajo MO, Jin GC, Yu WH, Ji SF, Zhou CH (2018) Adsorption of methylene blue from aqueous solution onto porous cellulose-derived carbon/montmorillonite nanocomposites. Appl Clay Sci 161:256–264

    Article  CAS  Google Scholar 

  • Trejo-O’Reilly JA, Cavaille JY, Gandini A (1997) The surface chemical modification of cellulosic fibres in view of their use in composite materials. Cellulose 4:305–320

    Article  Google Scholar 

  • Tu H, Zhu M, Duan B, Zhang, (2020) Recent progress in high-strength and robust regenerated cellulose materials. Adv Mater 33:2000682

    Article  Google Scholar 

  • Tyshkunova IV, Chukhchin DG, Gofman IV, Poshina DN, Skorik YA (2021) Cellulose cryogels prepared by regeneration from phosphoric acid solutions. Cellulose 28:4975–4989

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (1997) Synchrotron-radiated X-ray and neutron diffraction study of native cellulose. Cellulose 4:221–232

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spac- ings. J Wood Sci 47:124–128

    Article  CAS  Google Scholar 

  • Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286:90–100

    Article  CAS  PubMed  Google Scholar 

  • Vilar VJP, Motelho CMS, Boaventura RAE (2007) Methylene blue adsorption by algal biomass based materials: Biosorbents characterization and process behaviour. J Hazard Mater 147:120–132

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Liu H, Zhou Y, Li X (2011) Hydrogel beads based on carboxymethyl cellulose for removal heavy metal ions. J Appl Polym Sci 119:1204–1210

    Article  CAS  Google Scholar 

  • Yao W, Weng Y, Catchmark J (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27:5563–5579

    Article  CAS  Google Scholar 

  • Zemljic LF, Persin Z, Stenius P, Kleinschek KS (2008) Carboxyl groups in pre-treated regenerated cellulose fibers. Cellulose 15:681–690

    Article  CAS  Google Scholar 

  • Zhang L, Lu H, Yu J, Fan Y, Yang Y, Ma J, Wang Z (2018) Synthesis of lignocellulose- based composite hydrogel as a novel biosorbent for Cu2+ removal. Cellulose 25:7315–7328

    Article  CAS  Google Scholar 

  • Zhang L, Lu H, Yu J, Fan Y, Ma J, Wang Z (2019a) Contribution of lignin to the microstructure and physical performance of three-dimensional lignocellulose hydrogels. Cellulose 26:2375–2388

    Article  CAS  Google Scholar 

  • Zhang L, Lu H, Yu J, McSporran E, Khan A, Fan Y, Yang Y, Wang Z, Ni Y (2019b) Preparation of high-strength sustainable lignocellulose gels and their applications for antiultraviolet weathering and dye removal. ACS Sustain Chem Eng 3:2998–3009

    Article  Google Scholar 

  • Zhang N, Zang GL, Shi C, Yu HQ, Sheng GP (2016) A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: preparation, characterization, and application for Cu(II) removal. J Hazard Mater 316:11–18

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Duo H, Li S, An Y, Chen Z, Liu Z, Ren Y, Wang S, Zhang X, Wang X (2020) An overview of the recent advances in functionalization biomass adsorbent for toxic metals removal. Coll Interface Sci Commun 38:100308

    Article  CAS  Google Scholar 

  • Zhao H, Kwak JH, Wang Y, Franz JA, White JM, Holladay JE (2007) Interactions between cellulose and N-methylmorpholine-N-oxide. Carbohydr Polym 67:97–103

    Article  CAS  Google Scholar 

  • Zimmermann R, Muller Y, Freudenberg U, Jehnichen D, Potthast A, Rosenau T, Werner C (2016) Oxidation and structural changes in NMMO-regenerated cellulose films. Cellulose 23:3535–3541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from FONDECYT-ANID (Grants 3200114 and 1200504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Carrillo-Varela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The article does not include human participants and/or animals research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46035 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrillo-Varela, I., Mendonça, R.T., Pereira, M. et al. Methylene blue adsorption onto hydrogels made from different Eucalyptus dissolving pulps. Cellulose 29, 445–468 (2022). https://doi.org/10.1007/s10570-021-04301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04301-y

Keywords

Navigation