Skip to main content

Advertisement

Log in

Poly(ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The development of organic phase change materials (PCMs) with large energy storage capacity, high thermal conductivity, and satisfactory solar-thermal conversion performance is critical for large-scale solar energy utilization. Here, novel composite PCMs based on poly(ethylene glycol) (PEG), nanofibrillated cellulose (NFC), and graphene were successfully fabricated by impregnating PEG into PEG-grafted NFC/graphene hybrid aerogels (GA/NFC-g-PEG). The GA/NFC-g-PEG with three-dimensional interconnected porous structures well supported the PEG within the nanostructural frameworks and effectively prevented the leakage and diffusion of PEG above its melting point. Grafting of PEG onto NFC was performed to improve the affinity between PEG and NFC/graphene hybrid aerogels, which significantly increased the PEG loading capacity of the CNF-g-PEG/graphene aerogel and prevented the leakage of PEG. Differential scanning calorimetry result showed that the as-prepared composite PCMs possessed extremely high melting enthalpies ranging from 185.5 to 187.4 J/g. The hot stage-digital camera test and thermogravimetric analyses showed that the composite PCMs exhibited excellent form-stability and thermal stability. Moreover, the introduction of graphene significantly increased the thermal conductivity and solar-thermal conversion efficiency of the composite PCMs. In conclusion, the synthesized composite PCMs showed tremendous potential for thermal energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ali HM, Arshad A, Jabbal M, Verdin PG (2018) Thermal management of electronics devices with PCMs filled pin-fin heat sinks: a comparison. Int J Heat Mass Transf 117:1199–1204

    Article  CAS  Google Scholar 

  • Chen K, Liu R, Zou C, Shao Q, Lan Y, Cai X (2014) Linear polyurethane ionomers as solid–solid phase change materials for thermal energy storage. Sol Energy Mater Sol Cells 130:466–473

    Article  CAS  Google Scholar 

  • Chen C, Liu W, Wang Z, Peng K, Pan W, Xie Q (2015a) Novel form stable phase change materials based on the composites of polyethylene glycol/polymeric solid–solid phase change material. Sol Energy Mater Sol Cells 134:80–88

    Article  CAS  Google Scholar 

  • Chen C, Liu W, Wang H, Peng K (2015b) Synthesis and performances of novel solid–solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy 152:198–206

    Article  CAS  Google Scholar 

  • Chen Y, Ding H, Gao J, Tang X, Liu Y, Yang M (2020) A novel strategy for enhancing the thermal conductivity of shape-stable phase change materials via carbon-based in situ reduction of metal ions. J Clean Prod 243:118627–118634

    Article  CAS  Google Scholar 

  • Du X, Wang S, Du Z, Cheng X, Wang H (2018a) Preparation and characterization of flame-retardant nanoencapsulated phase change materials with poly(methylmethacrylate) shells for thermal energy storage. J Mater Chem A 6:17519–17529

    Article  CAS  Google Scholar 

  • Du X, Fang Y, Cheng X, Du Z, Mi Zhou, Wang H (2018b) Fabrication and characterization of flame-retardant nanoencapsulated n-octadecane with melamine-formaldehyde shell for thermal energy storage. ACS Sustain Chem Eng 6:15541–15549

    Article  CAS  Google Scholar 

  • Du X, Xu J, Deng S, Du Z, Cheng X, Wang H (2019) Amino-functionalized single-walled carbon nanotubes-integrated polyurethane phase change composites with superior photothermal conversion efficiency and thermal conductivity. ACS Sustain Chem Eng 7:17682–17690

    Article  CAS  Google Scholar 

  • Fu X, Xiao Y, Hu K, Wang J, Lei J, Zhou C (2016) Thermosetting solid–solid phase change materials composed of poly(ethylene glycol)-based two components: flexible application for thermal energy storage. Chem Eng J 291:138–148

    Article  CAS  Google Scholar 

  • Huang X, Liu Z, Xia W, Zou R, Han R (2015) Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels. J Mater Chem A 3:1935–1940

    Article  CAS  Google Scholar 

  • Kammen DM, Sunter DA (2016) City-integrated renewable energy for urban sustainability. Science 352:922–928

    Article  CAS  Google Scholar 

  • Kuznik F, David D, Johannes K, Roux J (2011) A review on phase change materials integrated in building walls. Renew Sustain Energy Rev 15:379–391

    Article  CAS  Google Scholar 

  • Li Y, Samad YA, Polychronopoulou K, Alhassan SM, Liao K (2014a) From biomass to high performance solar-thermal and electric-thermal energy conversion and storage materials. J Mater Chem A 2:7759–7765

    Article  CAS  Google Scholar 

  • Li Y, Wang S, Liu H, Meng F, Ma H, Zheng W (2014b) Preparation and characterization of melamine/formaldehyde/polyethylene glycol crosslinking copolymers as solid–solid phase change materials. Sol Energy Mater Sol Cells 127:92–97

    Article  Google Scholar 

  • Li G, Hong G, Dong D, Song W, Zhang X (2018) Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv Mater 30:1801754–1801761

    Article  Google Scholar 

  • Liu A, Medina L, Berglund L (2017) High-strength nanocomposite aerogels of ternary composition: poly(vinyl alcohol), clay, and cellulose nanofibrils. ACS Appl Mater Interfaces 9:6453–6461

    Article  CAS  Google Scholar 

  • Lyu J, Liu Z, Wu X, Li G, Fang D, Zhang X (2019) Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13:2236–2245

    Article  Google Scholar 

  • Peng K, Chen C, Pan W, Liu W, Wang Z, Zhu L (2016) Preparation and properties of β-cyclodextrin/4,4′-diphenylmethane diisocyanate/polyethylene glycol (β-CD/MDI/PEG) crosslinking copolymers as polymeric solid–solid phase change materials. Sol Energy Mater Sol Cells 145:238–247

    Article  CAS  Google Scholar 

  • Qian T, Zhu S, Wang H, Li A, Fan B (2019) Comparative study of single-walled carbon nanotubes and graphene nanoplatelets for improving the thermal conductivity and solar-to-light conversion of PEG-infiltrated phase-change material composites. ACS Sustain Chem Eng 7:2446–2458

    Article  CAS  Google Scholar 

  • Ren H, Tang M, Guan B, Wang K, Yang J, Wang F, Wang M, Shan J, Chen Z, Wei D, Peng H, Liu Z (2017) Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv Mater 29:1702590–1702596

    Article  Google Scholar 

  • Tang Y, Yeo K, Chen Y, Yap L, Xiong W, Cheng W (2013) Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. J Mater Chem A 1:6723–6726

    Article  CAS  Google Scholar 

  • Tang G, Jiang Z, Li X, Zhang H, Dasari A, Yu Z (2014) Three dimensional graphene aerogels and their electrically conductive composites. Carbon 77:592–599

    Article  CAS  Google Scholar 

  • Tang L, Yang J, Bao R, Liu Z, Xie B, Yang M, Yang W (2017) Polyethylene glycol/graphene oxide aerogel shape-stabilized phase change materials for photo-to-thermal energy conversion and storage via tuning the oxidation degree of graphene oxide. Energy Convers Manag 146:253–264

    Article  CAS  Google Scholar 

  • Tumirah K, Hussein M, Zulkarnain Z, Rafeadah R (2014) Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy 66:881–890

    Article  CAS  Google Scholar 

  • Wan Y, Zhu P, Yu S, Sun R, Wong C, Liao W (2017) Ultralight, super-elastic and volume-preserving cellulose fiber/graphene aerogel for high-performance electromagnetic interference shielding. Carbon 115:629–639

    Article  CAS  Google Scholar 

  • Wei Y, Li J, Sun F, Wu J, Zhao L (2018) Leakage-proof phase change composites supported by biomass carbon aerogels from succulents. Green Chem 20:1858–1865

    Article  CAS  Google Scholar 

  • Wei X, Xue F, Qi X, Yang J, Zhou Z, Yuan Y, Wang Y (2019) Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure. Appl Energy 236:70–80

    Article  CAS  Google Scholar 

  • Xiong W, Chen Y, Hao M, Zhang L, Mei T, Wang J, Li J (2015) Facile synthesis of PEG based shape-stabilized phase change materials and their photo-thermal energy conversion. Appl Therm Eng 91:630–637

    Article  CAS  Google Scholar 

  • Xu Y, Fleischer A, Feng G (2017) Reinforcement and shape stabilizaition of phase-change material via graphene oxide aerogel. Carbon 114:334–346

    Article  CAS  Google Scholar 

  • Yang J, Qi G, Tang L, Bao R, Bai L, Liu Z, Yang W, Xie B, Yang M (2016a) Novel photodriven composite phase change materials with bioinspired modification of BN for solar-thermal energy conversion and storage. J Mater Chem A 4:9625–9634

    Article  CAS  Google Scholar 

  • Yang J, Tang L, Bao R, Bai L, Liu Z, Yang W, Xie B, Yang M (2016b) An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light-thermal-electric energy conversion. J Mater Chem A 4:18841–18851

    Article  CAS  Google Scholar 

  • Yang J, Zhang E, Li X, Zhang Y, Qu J, Yu Z (2016c) Cellulose/graphene aerogel supported phase change composites with high thermal conductivity and good shape stability for thermal energy storage. Carbon 98:50–57

    Article  CAS  Google Scholar 

  • Yang J, Qi G, Liu Y, Bao R, Liu Z, Yang W, Xie B, Yang M (2016d) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100:693–702

    Article  CAS  Google Scholar 

  • Yang J, Tang L, Bao R, Bai L, Liu Z, Yang W, Xie B, Yang M (2017) Largely enhanced thermal conductivity of poly(ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets. Chem Eng J 315:481–490

    Article  CAS  Google Scholar 

  • Yang J, Qi G, Bao R, Yi K, Li M, Peng L, Cai Z, Yang M, Wei D, Yang W (2018) Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials. Energy Storage Mater 13:88–95

    Article  Google Scholar 

  • Ye S, Zhang Q, Hu D, Feng J (2015) Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A 3:4018–4025

    Article  CAS  Google Scholar 

  • Zhang L, Li R, Tang B, Wang P (2016a) Solar-thermal conversion and thermal energy storage of graphene foam-based composites. Nanoscale 8:14600–14607

    Article  CAS  Google Scholar 

  • Zhang X, Hou L, Samori P (2016b) Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat Commun 7:11118–11131

    Article  CAS  Google Scholar 

  • Zheng Q, Kvit A, Cai Z, Ma Z, Gong S (2017) A freestanding cellulose nanofibril-reduced graphene oxide-molybdenum oxynitride aerogel film electrode for all-solid-state supercapacitors with ultrahigh energy density. J Mater Chem A 5:12528–12541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Nos. 51773129, 51903167) and Sichuan Science and Technology Program 2019YFG0257. We also appreciate Wang Hui from the Analytical and Testing Center of Sichuan University for her help with SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, X., Zhou, M., Deng, S. et al. Poly(ethylene glycol)-grafted nanofibrillated cellulose/graphene hybrid aerogels supported phase change composites with superior energy storage capacity and solar-thermal conversion efficiency. Cellulose 27, 4679–4690 (2020). https://doi.org/10.1007/s10570-020-03110-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03110-z

Keywords

Navigation