Skip to main content
Log in

Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, graphene foam (GF) with a three-dimensional (3D) interconnected network produced by template-directed chemical vapor deposition (CVD) has been used to prepare composite phase-change materials (PCMs) with enhanced thermal conductivity. However, the pore size of GF is as large as hundreds of micrometers, resulting in a remarkable thermal resistance for heat transfer from the PCM inside the large pores to the GF strut walls. In this study, a novel 3D hierarchical GF (HGF) is obtained by filling the pores of GF with hollow graphene networks. The HGF is then used to prepare a paraffin wax (PW)-based composite PCM. The thermal conductivity of the PW/HGF composite PCM is 87% and 744% higher than that of the PW/GF composite PCM and pure PW, respectively. The PW/HGF composite PCM also exhibits better shape stability than the PW/GF composite PCM, negligible change in the phase-change temperature, a high thermal energy storage density that is 95% of pure PW, good thermal reliability, and chemical stability with cycling for 100 times. More importantly, PW/HGF composite PCM allows light-driven thermal energy storage with a high light-to-thermal energy conversion and storage efficiency, indicating its great potential for applications in solar-energy utilization and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kholmanov, I.; Kim, J.; Ou, E.; Ruoff, R. S.; Shi, L. Continuous carbon nanotube–ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials. ACS Nano 2015, 9, 11699–11707.

    Article  Google Scholar 

  2. Zhang, Z. Y.; Dong, Y.; Wang, L.; Wang, S. Scalable synthesis of a Pd nanoparticle loaded hierarchically porous graphene network through multiple synergistic interactions. Chem. Commun. 2015, 51, 8357–8360.

    Article  Google Scholar 

  3. Chen, L.; Zou, R.; Xia, W.; Liu, Z.; Shang, Y.; Zhu, J.; Wang, Y.; Lin, J.; Xia, D.; Cao, A. Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. ACS Nano 2012, 6, 10884–10892.

    Google Scholar 

  4. Liu, Z. P.; Zou, R. Q.; Lin, Z. Q.; Gui, X. C.; Chen, R. J.; Lin, J. H.; Shang, Y. Y.; Cao, A. Y. Tailoring carbon nanotube density for modulating electro-to-heat conversion in phase change composites. Nano Lett. 2013, 13, 4028–4035.

    Article  Google Scholar 

  5. Ji, H. X.; Sellan, D. P.; Pettes, M. T.; Kong, X. H.; Ji, J. Y.; Shi, L.; Ruoff, R. S. Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy Environ. Sci. 2014, 7, 1185–1192.

    Article  Google Scholar 

  6. Ye, S. B.; Zhang, Q. L.; Hu, D. D.; Feng, J. C. Core-shelllike structured graphene aerogel encapsulating paraffin: Shape-stable phase change material for thermal energy storage. J. Mater. Chem. A 2015, 3, 4018–4025.

    Article  Google Scholar 

  7. Zhang, Q. L.; Cui, K. P.; Feng, J. C.; Fan, J. S.; Li, L. B.; Wu, L. M.; Huang, Q. Investigation on the recovery performance of olefin block copolymer/hexadecane form stable phase change materials with shape memory properties. Sol. Energy Mater. Sol. Cells 2015, 132, 632–639.

    Article  Google Scholar 

  8. Xin, G.; Sun, H.; Scott, S. M.; Yao, T.; Lu, F.; Shao, D.; Hu, T.; Wang, G.; Ran, G.; Lian, J. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage. ACS Appl. Mater. Interfaces 2014, 6, 15262–15271.

    Google Scholar 

  9. Goli, P.; Legedza, S.; Dhar, A.; Salgado, R.; Renteria, J.; Balandin, A. A. Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J. Power Sources 2014, 248, 37–43.

    Article  Google Scholar 

  10. Wang, Y. M.; Tang, B. T.; Zhang, S. F. Single-walled carbon nanotube/phase change material composites: Sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage. Adv. Funct. Mater. 2013, 23, 4354–4360.

    Article  Google Scholar 

  11. Yu, Z.-T.; Fang, X.; Fan, L.-W.; Wang, X.; Xiao, Y.-Q.; Zeng, Y.; Xu, X.; Hu, Y.-C.; Cen, K.-F. Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon 2013, 53, 277–285.

    Article  Google Scholar 

  12. Qi, G.-Q.; Yang, J.; Bao, R.-Y.; Liu, Z.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 2015, 88, 196–205.

    Article  Google Scholar 

  13. Zhou, M.; Lin, T. Q.; Huang, F. Q.; Zhong, Y. J.; Wang, Z.; Tang, Y. F.; Bi, H.; Wan, D. Y.; Lin, J. H. Highly conductive porous graphene/ceramic composites for heat transfer and thermal energy storage. Adv. Funct. Mater. 2013, 23, 2263–2269.

    Article  Google Scholar 

  14. Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424–428.

    Article  Google Scholar 

  15. Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H., Jr.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc. 2010, 132, 14067–14069.

    Article  Google Scholar 

  16. Li, Y. R.; Chen, J.; Huang, L.; Li, C.; Hong, J.-D.; Shi, G. Q. Highly compressible macroporous graphene monoliths via an improved hydrothermal process. Adv. Mater. 2014, 26, 4789–4793.

    Article  Google Scholar 

  17. Pettes, M. T.; Ji, H. X.; Ruoff, R. S.; Shi, L. Thermal transport in three-dimensional foam architectures of fewlayer graphene and ultrathin graphite. Nano Lett. 2012, 12, 2959–2964.

    Article  Google Scholar 

  18. Sun, H.; Deng, J.; Qiu, L. B.; Fang, X.; Peng, H. S. Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 2015, 8, 1139–1159.

    Article  Google Scholar 

  19. Bonaccorso, F.; Balis, N.; Stylianakis, M. M.; Savarese, M.; Adamo, C.; Gemmi, M.; Pellegrini, V.; Stratakis, E.; Kymakis, E. Functionalized graphene as an electron-cascade acceptor for air-processed organic ternary solar cells. Adv. Funct. Mater. 2015, 25, 3870–3880.

    Article  Google Scholar 

  20. Li, Y. Q.; Samad, Y. A.; Polychronopoulou, K.; Alhassan, S. M.; Liao, K. From biomass to high performance solarthermal and electric-thermal energy conversion and storage materials. J. Mater. Chem. A 2014, 2, 7759–7765.

    Article  Google Scholar 

  21. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  22. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Largearea synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  23. Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

    Article  Google Scholar 

  24. Mehrali, M.; Latibari, S. T.; Mehrali, M.; Metselaar, H. S. C.; Silakhori, M. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Convers. Manag. 2013, 67, 275–282.

    Article  Google Scholar 

  25. Yavari, F.; Fard, H. R.; Pashayi, K.; Rafiee, M. A.; Zamiri, A.; Yu, Z. Z.; Ozisik, R.; Borca-Tasciuc, T.; Koratkar, N. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J. Phys. Chem. C 2011, 115, 8753–8758.

    Article  Google Scholar 

  26. Huang, X. Y.; Liu, Z. P.; Xia, W.; Zou, R. Q.; Han, R. P. S. Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels. J. Mater. Chem. A 2015, 3, 1935–1940.

    Article  Google Scholar 

  27. Chen, R. J.; Yao, R. M.; Xia, W.; Zou, R. Q. Electro/photo to heat conversion system based on polyurethane embedded graphite foam. Appl. Energ. 2015, 152, 183–188.

    Article  Google Scholar 

  28. Huang, X. Y.; Xia, W.; Zou, R. Q. Nanoconfinement of phase change materials within carbon aerogels: Phase transition behaviours and photo-to-thermal energy storage. J. Mater. Chem. A 2014, 2, 19963–19968.

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Thousand Young Talents of China, the National Natural Science Foundation of China (Nos. 21544001, 21603038, 51422305, and 51421061), the Innovation Team Program of Science & Technology Department of Sichuan Province (No. 2014TD0002) and State Key Laboratory of Polymer Materials Engineering (No. sklpme2014-2-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Yang or Dacheng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, G., Yang, J., Bao, R. et al. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage. Nano Res. 10, 802–813 (2017). https://doi.org/10.1007/s12274-016-1333-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1333-1

Keywords

Navigation