Skip to main content
Log in

Aqueous Phase Hydrodeoxygenation of Phenol on Hβ Zeolite Supported NiCo Alloy Catalysts

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Zeolites (Hβ, HZSM-5 and HM), TiO2 and ZrO2 supported NiCo alloy catalysts were tested for the hydrodeoxygenation of phenol in aqueous phase. It has been found that the catalyst acidity remarkably influences the catalyst activity and the product distribution. Zeolites supported catalysts give much higher yield of the deoxygenated products (mainly benzene and cyclohexane) than NiCo/TiO2 and NiCo/ZrO2, where cyclohexanol and cyclohexanone are dominating. Associated with NH3-TPD, we suggest that the catalyst acidity promotes the hydrodeoxygenation. Hβ zeolite supported NiCo alloy is more active than others, attributed to its higher metal dispersion and more acid sites. Therein, the Hβ zeolite calcined at 750 oC has moderate acidity, and its supported NiCo alloy catalyst (NiCo/HB-750) shows the best performance. Under a suitable reaction condition, the phenol conversion and the total yield of deoxygenated products reaches 96.8% and 94.5% on NiCo/HB-750, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Popp J, Kovács S, Oláh J et al (2021) Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnol 60:76–84. https://doi.org/10.1016/j.nbt.2020.10.004

    Article  CAS  Google Scholar 

  2. De Filippis P, Scarsella M, De Caprariis B, Uccellari R (2015) Biomass Gasification Plant and Syngas Clean-Up System. Energy Procedia 75:240–245. https://doi.org/10.1016/j.egypro.2015.07.318

    Article  CAS  Google Scholar 

  3. Feng L, Gao Y, Dai Z et al (2021) Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation. J Hazard Mater 415:125594. https://doi.org/10.1016/j.jhazmat.2021.125594

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Z, Li H (2022) Water-mediated catalytic hydrodeoxygenation of biomass. Fuel 310:122242. https://doi.org/10.1016/j.fuel.2021.122242

    Article  CAS  Google Scholar 

  5. Cordon MJ, Hall JN, Harris JW et al (2019) Deactivation of Sn-Beta zeolites caused by structural transformation of hydrophobic to hydrophilic micropores during aqueous-phase glucose isomerization. Catal Sci Technol 9:1654–1668. https://doi.org/10.1039/C8CY02589D

    Article  CAS  Google Scholar 

  6. Rousseau R, Weber RS, Mei D, Lercher JA (2014) First-principles study of Phenol Hydrogenation on Pt and Ni catalysts in aqueous phase. J Am Chem Soc 136:10287–10298. https://doi.org/10.1021/ja501592y

    Article  CAS  PubMed  Google Scholar 

  7. Kay Lup AN, Abnisa F, Wan Daud WMA, Aroua MK (2017) A review on reactivity and stability of heterogeneous metal catalysts for deoxygenation of bio-oil model compounds. J Ind Eng Chem 56:1–34. https://doi.org/10.1016/j.jiec.2017.06.049

    Article  CAS  Google Scholar 

  8. Zhu J-F, Tao G-H, Liu H-Y et al (2014) Aqueous-phase selective hydrogenation of phenol to cyclohexanone over soluble pd nanoparticles. Green Chem 16:2664–2669. https://doi.org/10.1039/C3GC42408A

    Article  CAS  Google Scholar 

  9. Nelson RC, Baek B, Ruiz P et al (2015) Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of Phenol over Ru/TiO 2. ACS Catal 5:6509–6523. https://doi.org/10.1021/acscatal.5b01554

    Article  CAS  Google Scholar 

  10. Lu J, Ma Z, Wei X et al (2020) Support morphology-dependent catalytic activity of the Co/CeO 2 catalyst for the aqueous-phase hydrogenation of phenol. New J Chem 44:9298–9303. https://doi.org/10.1039/C9NJ06226B

    Article  CAS  Google Scholar 

  11. Xue H, Gong X, Xu J, Hu R (2019) Performance of a Ni-Cu-Co/Al2O3 Catalyst on in-situ hydrodeoxygenation of Bio-derived Phenol. Catalysts 9:952. https://doi.org/10.3390/catal9110952

    Article  CAS  Google Scholar 

  12. Lestari AR, Suratmo, Ulfa SM (2019) Effect of support on the hydrodeoxygenation of phenol using Ni-based metal catalysts: Ni/SiO 2, Ni/ZrO 2, and Ni/Al 2 O 3. IOP Conf Ser: Mater Sci Eng 546:072004. https://doi.org/10.1088/1757-899X/546/7/072004

    Article  CAS  Google Scholar 

  13. Ambursa MM, Juan JC, Yahaya Y et al (2021) A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. Renew Sustain Energy Rev 138:110667. https://doi.org/10.1016/j.rser.2020.110667

    Article  CAS  Google Scholar 

  14. Wang X, Feng S, Wang Y et al (2023) Enhanced hydrodeoxygenation of lignin-derived anisole to arenes catalyzed by Mn-doped Cu/Al2O3. Green Energy Environ 8:927–937. https://doi.org/10.1016/j.gee.2021.12.004

    Article  CAS  Google Scholar 

  15. Rios-Escobedo R, Ortiz-Santos E, Colín-Luna JA et al (2022) Anisole Hydrodeoxygenation: a comparative study of Ni/TiO2-ZrO2 and commercial TiO2 supported Ni and NiRu catalysts. Top Catal 65:1448–1461. https://doi.org/10.1007/s11244-022-01662-x

    Article  CAS  Google Scholar 

  16. Teles CA, De Souza PM, Rabelo-Neto RC et al (2022) Reaction pathways for the HDO of guaiacol over supported pd catalysts: Effect of support type in the deoxygenation of hydroxyl and methoxy groups. Mol Catal 523:111491. https://doi.org/10.1016/j.mcat.2021.111491

    Article  CAS  Google Scholar 

  17. Zhao C, Kasakov S, He J, Lercher JA (2012) Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. J Catal 296:12–23. https://doi.org/10.1016/j.jcat.2012.08.017

    Article  CAS  Google Scholar 

  18. Zhang J, Fidalgo B, Shen D et al (2018) Mechanism of hydrodeoxygenation (HDO) in anisole decomposition over metal loaded Brønsted acid sites: Density Functional Theory (DFT) study. Mol Catal 454:30–37. https://doi.org/10.1016/j.mcat.2018.05.015

    Article  CAS  Google Scholar 

  19. Salakhum S, Saenluang K, Wattanakit C (2020) Stability of monometallic pt and Ru supported on hierarchical HZSM-5 nanosheets for hydrodeoxygenation of lignin-derived compounds in the aqueous phase. Sustainable Energy Fuels 4:1126–1134. https://doi.org/10.1039/C9SE00773C

    Article  CAS  Google Scholar 

  20. Huynh TM, Armbruster U, Pohl M et al (2014) Hydrodeoxygenation of Phenol as a model compound for bio-oil on non‐noble. Bimetallic Nickel‐based Catalysts ChemCatChem 6:1940–1951. https://doi.org/10.1002/cctc.201402011

    Article  CAS  Google Scholar 

  21. Valizadeh S, Pyo S, Kim Y-M et al (2022) Production of aromatics fuel additives from catalytic pyrolysis of cow manure over HZSM-5, HBeta, and HY zeolites. Chem Eng J 450:137971. https://doi.org/10.1016/j.cej.2022.137971

    Article  CAS  Google Scholar 

  22. Feng J, Hse C, Yang Z et al (2017) Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts. Appl Catal A 542:163–173. https://doi.org/10.1016/j.apcata.2017.05.022

    Article  CAS  Google Scholar 

  23. Zhang J, Tian F, Chen J et al (2021) Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Front Chem Sci Eng 15:288–298. https://doi.org/10.1007/s11705-020-1932-y

    Article  CAS  Google Scholar 

  24. Shafaghat H, Rezaei PS, Daud WMAW (2016) Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta. J Ind Eng Chem 35:268–276. https://doi.org/10.1016/j.jiec.2016.01.001

    Article  CAS  Google Scholar 

  25. Griffin MB, Baddour FG, Habas SE et al (2017) An investigation into support cooperativity for the deoxygenation of guaiacol over nanoparticle ni and rh 2 P. Catal Sci Technol 7:2954–2966. https://doi.org/10.1039/C7CY00261K

    Article  CAS  Google Scholar 

  26. Zhao C, Kou Y, Lemonidou AA et al (2009) Highly selective Catalytic Conversion of Phenolic Bio-oil to Alkanes. Angew Chem 121:4047–4050. https://doi.org/10.1002/ange.200900404

    Article  Google Scholar 

  27. Zhao C, Lercher JA (2012) Selective hydrodeoxygenation of lignin-derived phenolic monomers and dimers to Cycloalkanes on Pd/C and HZSM‐5 catalysts. ChemCatChem 4:64–68. https://doi.org/10.1002/cctc.201100273

    Article  CAS  Google Scholar 

  28. Zhang X, Wang Z, Shu S et al (2023) Hydrogenation of phenol to cyclohexanol and cyclohexanone on ZrO2-supported Ni-Co alloy in water. Reac Kinet Mech Cat 136:937–952. https://doi.org/10.1007/s11144-023-02376-1

    Article  CAS  Google Scholar 

  29. Li Y, Liu J, He J et al (2020) Silica/titania composite-supported NiCo catalysts with combined catalytic effects for phenol hydrogenation under fast and mild conditions. Appl Catal A 591:117409. https://doi.org/10.1016/j.apcata.2020.117409

    Article  CAS  Google Scholar 

  30. Huynh T, Armbruster U, Kreyenschulte C et al (2016) Understanding the Performance and Stability of supported Ni-Co-Based catalysts in Phenol HDO. Catalysts 6:176. https://doi.org/10.3390/catal6110176

    Article  CAS  Google Scholar 

  31. Gonçalves VOO, Talon WHSM, Kartnaller V et al (2021) Hydrodeoxygenation of m-cresol as a depolymerized lignin probe molecule: synergistic effect of NiCo supported alloys. Catal Today 377:135–144. https://doi.org/10.1016/j.cattod.2020.10.042

    Article  CAS  Google Scholar 

  32. Pan L, He Y, Niu M et al (2019) Selective hydrodeoxygenation of p -cresol as a model for coal tar distillate on Ni–M/SiO 2 (M = ce, Co, Sn, Fe) bimetallic catalysts. RSC Adv 9:21175–21185. https://doi.org/10.1039/C9RA02791B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raikwar D, Majumdar S, Shee D (2021) Synergistic effect of Ni-Co alloying on hydrodeoxygenation of guaiacol over Ni-Co/Al2O3 catalysts. Mol Catal 499:111290. https://doi.org/10.1016/j.mcat.2020.111290

    Article  CAS  Google Scholar 

  34. Blanco E, Dongil AB, Escalona N (2020) Synergy between Ni and Co nanoparticles supported on Carbon in Guaiacol Conversion. Nanomaterials 10:2199. https://doi.org/10.3390/nano10112199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu C, Su T-R, Lin T-J et al (2018) Yellowish and blue luminescent graphene oxide quantum dots prepared via a microwave-assisted hydrothermal route using H 2 O 2 and KMnO 4 as oxidizing agents. New J Chem 42:3999–4007. https://doi.org/10.1039/C7NJ03337K

    Article  CAS  Google Scholar 

  36. Liu M, Zhang J, Zheng L et al (2020) Significant Promotion of Surface Oxygen vacancies on Bimetallic CoNi nanocatalysts for Hydrodeoxygenation of Biomass-derived Vanillin to produce Methylcyclohexanol. ACS Sustainable Chem Eng 8:6075–6089. https://doi.org/10.1021/acssuschemeng.0c01015

    Article  CAS  Google Scholar 

  37. Han Y, Shi Y, Wang D et al (2023) Hydrogenation of phenol to Cyclohexanone in Aqueous phase on WO3 modified Ni/ZrO2 Catalyst. Catal Surv Asia 27:406–414. https://doi.org/10.1007/s10563-023-09405-y

    Article  CAS  Google Scholar 

  38. Li W, Nie X, Jiang X et al (2018) ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl Catal B 220:397–408. https://doi.org/10.1016/j.apcatb.2017.08.048

    Article  CAS  Google Scholar 

  39. Zerva C, Karakoulia SA, Kalogiannis KG et al (2021) Hydrodeoxygenation of phenol and biomass fast pyrolysis oil (bio-oil) over Ni/WO3-ZrO2 catalyst. Catal Today 366:57–67. https://doi.org/10.1016/j.cattod.2020.08.029

    Article  CAS  Google Scholar 

  40. Toktarev AV, Malysheva LV, Paukshtis EA (2010) Effect of thermal treatment conditions on the acid properties of zeolite Beta. Kinet Catal 51:318–324. https://doi.org/10.1134/S0023158410020229

    Article  CAS  Google Scholar 

  41. Teles CA, Rabelo-Neto RC, Duong N et al (2020) Role of the metal-support interface in the hydrodeoxygenation reaction of phenol. Appl Catal B 277:119238. https://doi.org/10.1016/j.apcatb.2020.119238

    Article  CAS  Google Scholar 

  42. Zhu Q, Duan H, Lin B et al (2019) Higher acetone Conversion Obtained over a TiO2–Pd Bifunctional Catalyst for Liquid-Phase synthesis of Methyl Isobutyl Ketone: the role of Al2O3 support. Catal Lett 149:2636–2644. https://doi.org/10.1007/s10562-019-02861-0

    Article  CAS  Google Scholar 

  43. Baithy M, Mukherjee D, Rangaswamy A, Reddy BM (2022) Structure–Activity relationships of WOx-Promoted TiO2–ZrO2 Solid Acid Catalyst for Acetalization and Ketalization of glycerol towards Biofuel additives. Catal Lett 152:1428–1440. https://doi.org/10.1007/s10562-021-03733-2

    Article  CAS  Google Scholar 

  44. Wu X, Sun Q, Wang H et al (2020) Effect of acid-metal balance of bifunctional Pt/Beta catalysts on vapor phase hydrodeoxygenation of m-cresol. Catal Today 355:43–50. https://doi.org/10.1016/j.cattod.2019.04.039

    Article  CAS  Google Scholar 

  45. Wu B, Li L, Wang H et al (2023) Role of MoO x /Ni(111) interfacial sites in direct deoxygenation of phenol toward benzene. Catal Sci Technol 13:2201–2211. https://doi.org/10.1039/D2CY01529C

    Article  CAS  Google Scholar 

  46. Saidi M, Samimi F, Karimipourfard D et al (2014) Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ Sci 7:103–129. https://doi.org/10.1039/C3EE43081B

    Article  CAS  Google Scholar 

  47. Song Q, Li J, Wang S et al (2019) Enhanced Electrocatalytic Performance through Body Enrichment of Co-based Bimetallic nanoparticles in situ embedded porous N‐Doped Carbon spheres. Small 15:1903395. https://doi.org/10.1002/smll.201903395

    Article  CAS  Google Scholar 

  48. Luo H, Zhang X, Zhu H et al (2023) Tailoring d-band center over electron traversing effect of NiM@C-CoP (M = zn, Mo, Ni, Co) for high-performance electrocatalysis hydrogen evolution. J Mater Sci Technol 166:164–172. https://doi.org/10.1016/j.jmst.2023.05.028

    Article  CAS  Google Scholar 

  49. Guan Q, Zeng Y, Shen J et al (2016) Selective hydrogenation of phenol by phosphotungstic acid modified Pd/Ce-AlO x catalyst in high-temperature water system. Chem Eng J 299:63–73. https://doi.org/10.1016/j.cej.2016.03.105

    Article  CAS  Google Scholar 

  50. Chávez LM, Alonso F, Ancheyta J (2014) Vapor–liquid equilibrium of hydrogen–hydrocarbon systems and its effects on hydroprocessing reactors. Fuel 138:156–175. https://doi.org/10.1016/j.fuel.2014.03.062

    Article  CAS  Google Scholar 

  51. Huang Y, Xia S, Ma P (2017) Effect of zeolite solid acids on the in situ hydrogenation of bio-derived phenol. Catal Commun 89:111–116. https://doi.org/10.1016/j.catcom.2016.11.002

    Article  CAS  Google Scholar 

  52. Zhang X, Wang T, Ma L et al (2013) Hydrotreatment of bio-oil over Ni-based catalyst. Bioresour Technol 127:306–311. https://doi.org/10.1016/j.biortech.2012.07.119

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 21576193 and 21176177).

Author information

Authors and Affiliations

Authors

Contributions

HZ, Methodology, Formal analysis and Investigation, Writing—original draft preparation SF, Methodology, Formal analysis. JY, Investigation. HJ, Investigation. XZ, Formal analysis. JC, Conceptualization, Methodology, Writing—review and editing, Funding acquisition, Supervision.

Corresponding author

Correspondence to Jixiang Chen.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Feng, S., Yang, J. et al. Aqueous Phase Hydrodeoxygenation of Phenol on Hβ Zeolite Supported NiCo Alloy Catalysts. Catal Surv Asia (2024). https://doi.org/10.1007/s10563-024-09424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10563-024-09424-3

Keywords

Navigation