Skip to main content
Log in

Synthesis of Pd-Based Bimetallic Nanoparticles and Their Effective Electrocatalytic Properties

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

In this work, we developed a simple and effective one-pot method to synthesize the Pd-based bimetallic nanoparticles (NPs) in the presence of polyvinylpyrrolidone (PVP). By using high-resolution transmission electron microscopy (HRTEM), energy-dispersive spectrometry (EDS) mapping and X-ray diffraction (XRD), the morphologies and compositions of the as-prepared bimetallic NPs were investigated in detail. Furthermore, this approach was also used to achieve the highly dispersive Pd-based bimetallic NPs directly on the carbon black. Significantly, the as-obtained carbon-supported Pd-based bimetallic NPs showed excellent electrocatalytic activity for the methanol oxidation. Among the Pd-based bimetallic NPs and the commercial Pd–C, the PdPt–C displayed the best electrocatalytic activity and stability, which may be mainly attributed to the specific nanostructure and the synergetic effect between Pt and Pd atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu C, Du D, Eychmuller A, Lin Y (2015) Engineering ordered and nonordered porous noble metal nanostructures: synthesis, assembly, and their applications in electrochemistry. Chem Rev 115:8896–8943

    Article  CAS  Google Scholar 

  2. Han M, Wang N, Zhang B, Xia YJ, Li J, Han JR, Yao KL, Gao CC, He CN, Liu YC, Wang ZM, Seifitokaldani A, Sun XH, Liang HY (2020) High-valent nickel promoted by atomically embedded copper for efficient water oxidation. ACS Catal 10:9725–9734

    Article  CAS  Google Scholar 

  3. Suen NT, Hung SF, Quan Q, Zhang N, Xu YJ, Chen HM (2017) Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev 46:337–365

    Article  CAS  Google Scholar 

  4. Zhou YF, Shen Y, Xi JY, Luo XL (2019) Selective electro-oxidation of glycerol to dihydroxyacetone by PtAg skeletons. ACS Appl Mater Interfaces 11:28953–28959

    Article  CAS  Google Scholar 

  5. Fang C, Zhao J, Jiang R, Wang J, Zhao G, Geng B (2018) Engineering of hollow PdPt nanocrystals via reduction kinetic control for their superior electrocatalytic performances. ACS Appl Mater Interfaces 10:29543–29551

    Article  CAS  Google Scholar 

  6. Zhou Y, Shen Y, Piao J (2018) Sustainable conversion of glycerol into value-added chemicals by selective electro-oxidation on Pt-based catalysts. ChemElectroChem 5:1636–1643

    Article  CAS  Google Scholar 

  7. Guo L, Huang LB, Jiang WJ, Wei ZD, Wan LJ, Hu JS (2017) Tuning the branches and composition of PtCu nanodendrites through underpotential deposition of Cu towards advanced electrocatalytic activity. J Mater Chem A 5:9014–9021

    Article  CAS  Google Scholar 

  8. Tian XL, Luo JM, Nan HX, Zou HB, Chen R, Shu T, Li XH, Li YW, Song HY, Liao SJ, Adzic RR (2016) Transition metal nitride coated with atomic layers of Pt as a low cost, highly stable electrocatalyst for the oxygen reduction reaction. J Am Chem Soc 138:1575–1583

    Article  CAS  Google Scholar 

  9. Lv Q, Xiao Y, Yin M, Ge JJ, Xing W, Liu CP (2014) Reconstructed PtFe alloy nanoparticles with bulk-surface differential structure for methanol oxidation. Electrochim Acta 139:61–68

    Article  CAS  Google Scholar 

  10. Yoon S, Yun J-Y, Lim J-H, Yoo B (2017) Enhanced electrocatalytic properties of electrodeposited amorphous cobalt–nickel hydroxide nanosheets on nickel foam by the formation of nickel nanocones for the oxygen evolution reaction. J Alloys Compd 693:964–969

    Article  CAS  Google Scholar 

  11. Fu GT, Gong MX, Tang YW, Xu L, Sun DM, Lee JM (2015) Hollow and porous palladium nanocrystals: synthesis and electrocatalytic application. J Mater Chem A 3:21995–21999

    Article  CAS  Google Scholar 

  12. Li J, Zhu QL, Xu Q (2015) Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation. Chem Commun 51:10827–10830

    Article  CAS  Google Scholar 

  13. Cai B, Wen D, Liu W, Herrmann AK, Benad A, Eychmiiller A (2015) Function-led design of aerogels: self-assembly of alloyed PdNi hollow nanospheres for efficient electrocatalysis. Angew Chem Int Ed 54:13101–13105

    Article  CAS  Google Scholar 

  14. Fan Y, Zhang Y, Cui Y, Wang JL, Wei MM, Zhang XK, Li W (2016) A porous ternary PtPdCu alloy with a spherical network structure for electrocatalytic methanol oxidation. RSC Adv 6:83373–83379

    Article  CAS  Google Scholar 

  15. Xi PX, Cao Y, Yang FC, Ma C, Chen FJ, Yu S, Wang S, Zeng ZZ, Zhang X (2013) Facile synthesis of Pd-based bimetallic nanocrystals and their application as catalysts for methanol oxidation reaction. Nanoscale 5:6124–6130

    Article  CAS  Google Scholar 

  16. Shen SY, Zhao TS, Xu JB, Li YS (2010) Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources 195:1001–1006

    Article  CAS  Google Scholar 

  17. Wang DS, Li YD (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060

    Article  CAS  Google Scholar 

  18. Fu FY, He S, Yang S, Wang C, Zhang X, Li P, Sheng HT, Zhu MZ (2015) Monodispersed AuPd nanoalloy: composition control synthesis and catalytic properties in the oxidative dehydrogenative coupling of aniline. Sci China Chem 58:1532–1536

    Article  CAS  Google Scholar 

  19. Fu GT, Wu K, Lin J, Tang YW, Chen Y, Zhou YM, Lu TH (2013) One-pot water-based synthesis of Pt–Pd alloy nanoflowers and their superior electrocatalytic activity for the oxygen reduction reaction and remarkable methanol-tolerant ability in acid media. J Phys Chem C 117:9826–9834

    Article  CAS  Google Scholar 

  20. Kang SW, Lee YW, Park YS, Choi BS, Hong JW, Park KHA, Han W (2013) One-pot synthesis of trimetallic Au@PdPt core–shell nanoparticles with high catalytic performance. ACS Nano 7:7945–7955

    Article  CAS  Google Scholar 

  21. Huang XQ, Li YJ, Li YJ, Zhou HL, Duan XF, Huang Y (2012) Synthesis of PtPd bimetal nanocrystals with controllable shape, composition, and their tunable catalytic properties. Nano Lett 12:4265–4270

    Article  CAS  Google Scholar 

  22. Sun YG, Mayers BT, Xia YN (2002) Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2:481–485

    Article  CAS  Google Scholar 

  23. Yu Y, Zhang QB, Xie JP, Lee JY (2013) Engineering the architectural diversity of heterogeneous metallic nanocrystals. Nat Commun 4:1–8

    Google Scholar 

  24. Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Article  CAS  Google Scholar 

  25. Su GX, Jiang HQ, Zhu HY, Lv JJ, Yang GH, Yan B, Zhu JJ (2017) Controlled deposition of palladium nanodendrites on the tips of gold nanorods and their enhanced catalytic activity. Nanoscale 9:12494–12502

    Article  CAS  Google Scholar 

  26. Hong X, Wang DS, Yu R, Yan H, Sun Y, He L, Niu ZQ, Peng Q, Li YD (2011) Ultrathin Au–Ag bimetallic nanowires with Coulomb blockade effects. Chem Commun 47:5160–5162

    Article  CAS  Google Scholar 

  27. Xiong YL, Ma YL, Li JJ, Huang JB, Yan YC, Zhang H, Wu JB, Yang DR (2017) Strain-induced Stranski–Krastanov growth of Pd@Pt core–shell hexapods and octapods as electrocatalysts for methanol oxidation. Nanoscale 9:11077–11084

    Article  CAS  Google Scholar 

  28. Kim DY, Choi KW, Zhong XL, Li ZY, Im SH, Park OO (2013) Au@Pd core–shell nanocubes with finely-controlled sizes. CrystEngComm 15:3385–3391

    Article  CAS  Google Scholar 

  29. Wang H, He X, Zhao YX, Li JL, Huang T, Liu HF (2017) Facile synthesis of self-assemblies of ultrathin round Pd nanosheets or nanorings and their enhanced electrocatalytic activities. CrystEngComm 19:4304–4311

    Article  CAS  Google Scholar 

  30. Ye W, Kou SF, Guo X, Xie F, Sun HY, Lu HT, Yang J (2015) Controlled synthesis of bimetallic Pd–Rh nanoframes and nanoboxes with high catalytic performances. Nanoscale 7:9558–9562

    Article  CAS  Google Scholar 

  31. Gu J, Zhang YW (2012) Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev 41:8050–8065

    Article  CAS  Google Scholar 

  32. Wu BH, Zheng NF (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8:168–197

    Article  Google Scholar 

  33. Feng L, Chong HB, Li P, Xiang J, Fu FY, Yang S, Yu H, Sheng HT, Zhu MZ (2015) Pd–Ni alloy nanoparticles as effective catalysts for Miyaura–Heck coupling reactions. J Phys Chem C 119:11511–11515

    Article  CAS  Google Scholar 

  34. Xiang J, Li P, Chong HB, Feng L, Fu FY, Wang Z, Zhang SL, Zhu MZ (2014) Bimetallic Pd–Ni core–shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res 7:1337–1343

    Article  CAS  Google Scholar 

  35. Zhang H, Jin MS, Xiong YJ, Lim B, Xia YN (2013) Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46:1783–1794

    Article  CAS  Google Scholar 

  36. Xiong Y, Washio I, Chen J, Cai H, Li Z, Xia Y (2006) Poly(vinylpyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22:8563–8570

    Article  CAS  Google Scholar 

  37. Wang DS, Li YD (2011) Effective octadecylamine system for nanocrystal synthesis. Inorg Chem 50:5196–5202

    Article  CAS  Google Scholar 

  38. Wang DS, Li YD (2010) One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J Am Chem Soc 18:6280–6281

    Article  Google Scholar 

  39. Tofighi G, Yu XJ, Lichtenberg H, Doronkin DE, Wang W, Wöll C, Wang YM, Grunwaldt JD (2019) Chemical nature of microfluidically synthesized AuPd nanoalloys supported on TiO2. ACS Catal 9:5462–5473

    Article  CAS  Google Scholar 

  40. Gu ZL, Xu H, Bin D, Yan B, Li SM, Xiong ZP, Zhang K, Du YK (2017) Preparation of PdNi nanospheres with enhanced catalytic performance for methanol electrooxidation in alkaline medium. Colloids Surf A 529:651–658

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project of Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials(Anhui University), Ministry of Education, the Opening Project of PCOSS, Xiamen University (No. 201921), Excellent Talent Foundation of Education Department of Anhui Province (No. gxyq2018055), the Natural Science Foundation of the Education Department of Anhui Province (Nos. KJ2019A0718, KJ2019A0731, KJ2020A0096), the Program of Visiting Scholar for Young Scholar Sponsored by Department of Education Anhui Province (gxgnfx2020095) and the Fifth Batch of “special branch plan” Projects in Anhui Province were appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fankuo Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

DOCX 2762 kb Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, J., Ju, F., Sun, M. et al. Synthesis of Pd-Based Bimetallic Nanoparticles and Their Effective Electrocatalytic Properties. Catal Surv Asia 25, 399–405 (2021). https://doi.org/10.1007/s10563-021-09338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-021-09338-4

Keywords

Navigation