Skip to main content
Log in

Effective Descriptor for Nitrogen Reduction on Atomic Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Single- and bi-atom catalysts (SACs and BACs) exhibit great potential in catalyzing electrochemical nitrogen reduction reaction (NRR) due to their unusual coordination-environment effect of active centers, which unfortunately remains elusive so far. Herein, by applying a descriptor ψ based on the valence-electron number and electronegativity of the catalytic centers, we have systematically studied NRR on SACs and BACs with diverse coordination environments. Our results quantify the elemental type and number of metal atoms and their neighbors at the active centers on the adsorption properties and reactivity of atomic catalysts. This uncovers the pronounced differences and similarities between SACs, homonuclear BACs, and heteronuclear BACs as well as the unique role of N dopant. With these findings, we have also predicted that Ir-N4-SAC and TiMn-N6-BAC as promising candidates for further experimental studies. Therefore, our findings can serve as useful guidelines for developing high-performance catalysts for NRR.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  2. Kitano M, Inoue Y, Yamazaki Y et al (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4:934–940

    Article  CAS  Google Scholar 

  3. Chen JG, Crooks RM, Seefeldt LC et al (2018) Beyond fossil fuel–driven nitrogen transformations. Science 360:6611

    Article  Google Scholar 

  4. Han GF, Li F, Chen ZW et al (2021) Mechanochemistry for ammonia synthesis under mild conditions. Nat Nanotechnol 16:325–330

    Article  CAS  Google Scholar 

  5. Bao D, Zhang Q, Meng FL et al (2017) Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv Mater 29:1604799

    Article  Google Scholar 

  6. Guo C, Ran J, Vasileff A, Qiao SZ (2018) Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ Sci 11:45–56

    Article  CAS  Google Scholar 

  7. Wan Y, Xu J, Lv R (2019) Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Mater Today 27:69–90

    Article  CAS  Google Scholar 

  8. Gao X, Song M, Sun D, Guan R, Zhai H, Zhao Z, Zhang Q, Li X (2021) A facile in situ hydrothermal etching method to CaTiO3/TiO2 heterostructure for efficient photocatalytic N2 reduction. Catal Lett 11:3516–3522

    Google Scholar 

  9. Li H, Liu Y, Chen K, Margraf JT, Li Y, Reuter K (2021) Subgroup discovery points to the prominent role of charge transfer in breaking nitrogen scaling relations at single-atom catalysts on VS2. ACS Catal 11:7906–7914

    Article  CAS  Google Scholar 

  10. Zhou Y, Song E, Chen W et al (2020) Dual-metal interbonding as the chemical facilitator for single-atom dispersions. Adv Mater 32:e2003484

    Article  Google Scholar 

  11. Ju YW, Yoo S, Kim C, Kim S, Jeon IY, Shin J, Baek JB, Kim G (2016) Fe@N-graphene nanoplatelet-embedded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction. Adv Sci 3:1500205

    Article  Google Scholar 

  12. Xia JJ, Guo H, Yu G et al (2021) 2D Vanadium carbide (MXene) for electrochemical synthesis of ammonia under ambient conditions. Catal Lett 151:3516–3522

    Article  CAS  Google Scholar 

  13. Zhong W, Liu Y, Deng M, Zhang Y, Jia C, Prezhdo OV, Yuan J, Jiang J (2018) C2N-supported single metal ion catalysts for HCOOH dehydrogenation. J Mater Chem A 6:11105–11112

    Article  CAS  Google Scholar 

  14. Zhong W, Zhang G, Zhang Y et al (2019) Enhanced activity of C2N-supported single Co atom catalyst by single atom promoter. J Phys Chem Lett 10:7009–7014

    Article  CAS  Google Scholar 

  15. Zhou Y, Zhang J, Song E et al (2020) Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat Commun 11:2253

    Article  CAS  Google Scholar 

  16. Han Y, Zhang Z, Guo L (2021) Electrocatalytic CO2 reduction activity over transition metal anchored on nitrogen-doped carbon: a density functional theory investigation. Catal Lett 151:2547–2559

    Article  CAS  Google Scholar 

  17. Suryanto BH, Wang D, Azofra LM et al (2018) MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Lett 4:430–435

    Article  Google Scholar 

  18. Fang Y, Liu Z, Han J et al (2019) High-performance electrocatalytic conversion of N2 to NH3 using oxygen-vacancy-rich TiO2 in situ grown on Ti3C2Tx mxene. Adv Energy Mater 9:1803406

    Article  Google Scholar 

  19. Li F, Han GF, Noh HJ, Kim SJ, Lu Y, Jeong HY, Fu Y, Baek JB (2018) Boosting oxygen reduction catalysis with abundant copper single atom active sites. Energy Environ Sci 11:2263–2269

    Article  CAS  Google Scholar 

  20. Yao Y, Wang H, Yuan XZ, Li H, Shao M (2019) Electrochemical nitrogen reduction reaction on ruthenium. ACS Energy Lett 4:1336–1341

    Article  CAS  Google Scholar 

  21. Choi C, Back S, Kim NY, Lim J, Kim YH, Jung Y (2018) Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: a computational guideline. ACS Catal 8:7517–7525

    Article  CAS  Google Scholar 

  22. Wang S, Li B, Li L, Tian Z, Zhang Q, Chen L, Zeng XC (2020) Highly efficient N2 fixation catalysts: transition-metal carbides M2C (Mxenes). Nanoscale 12:538–547

    Article  CAS  Google Scholar 

  23. Zhang X, Chen A, Zhang Z, Zhou Z (2018) Double-atom catalysts: transition metal dimer-anchored C2N monolayers as N2 fixation electrocatalysts. J Mater Chem A 6:18599–18604

    Article  CAS  Google Scholar 

  24. Li Y, Zhang Q, Li C, Fan HN, Luo WB, Liu HK, Dou SX (2019) Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction. J Mater Chem A 7:22242–22247

    Article  CAS  Google Scholar 

  25. Wang M, Liu S, Qian T et al (2019) Over 56.55% faradaic efficiency of ambient ammonia synthesis enabled by positively shifting the reaction potential. Nat Commun 10:341

    Article  CAS  Google Scholar 

  26. Lü F, Zhao S, Guo R et al (2019) Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media. Nano Energy 61:420–427

    Article  Google Scholar 

  27. Wang Y, Cui X, Zhao J et al (2019) Rational design of Fe–N/C hybrid for enhanced nitrogen reduction electrocatalysis under ambient conditions in aqueous solution. ACS Catal 9:336–344

    Article  CAS  Google Scholar 

  28. Zhang R, Jiao L, Yang W, Wan G, Jiang HL (2019) Single-atom catalysts templated by metal-organic frameworks for electrochemical nitrogen reduction. J Mater Chem A 7:26371–26377

    Article  CAS  Google Scholar 

  29. Geng Z, Liu Y, Kong X, Li P, Li K, Liu Z, Du J, Shu M, Si R, Zeng J (2018) Achieving a record-high yield rate of 1209 µgNH3 mg-1cat h-1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv Mater 30:1803498

    Article  Google Scholar 

  30. Tao H, Choi C, Ding LX et al (2019) Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 5:204–214

    Article  CAS  Google Scholar 

  31. Qin Q, Heil T, Antonietti M, Oschatz M (2018) Single-site gold catalysts on hierarchical N-doped porous noble carbon for enhanced electrochemical reduction of nitrogen. Small Methods 2:1800202

    Article  Google Scholar 

  32. Wang X, Wang W, Qiao M et al (2018) Atomically dispersed Au1 catalyst towards efficient electrochemical synthesis of ammonia. Sci Bull 63:1246–1253

    Article  CAS  Google Scholar 

  33. Skulason E, Bligaard T, Gudmundsdóttir S et al (2012) A Theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys Chem Chem Phys 14:1235–1245

    Article  CAS  Google Scholar 

  34. Montoya JH, Tsai C, Vojvodic A, Nørskov JK (2015) Fe@C2N: a highly-efficient indirect-contact oxygen reduction catalyst. Chemsuschem 8:2180–2186

    Article  CAS  Google Scholar 

  35. Liu X, Jiao Y, Zheng Y, Jaroniec M, Qiao SZ (2019) Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J Am Chem Soc 141:9664–9672

    Article  CAS  Google Scholar 

  36. Guo X, Gu J, Lin S, Zhang S, Chen Z, Huang S (2020) Tackling the activity and selectivity challenges of electrocatalysts towards nitrogen reduction reaction via atomically dispersed bi-atom catalysts. J Am Chem Soc 142:5709–5721

    Article  CAS  Google Scholar 

  37. Chen Z, Zhao J, Cabrera CR, Chen Z (2019) Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (G-C3N4) for nitrogen electroreduction. Small Methods 3:1800368

    Article  Google Scholar 

  38. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip CJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys 14:2717–2744

    CAS  Google Scholar 

  39. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  40. Ruiz VG, Liu W, Zojer E, Scheffler M, Tkatchenko A (2012) Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. Phys Rev Lett 108:146103

    Article  Google Scholar 

  41. Adllan AA, Corso AD (2002) Ultrasoft pseudopotentials and projector augmented-wave data sets: application to diatomic molecules. J Phys 23:425501

    Google Scholar 

  42. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  43. Gao W, Chen Y, Li B, Liu SP, Liu X, Jiang Q (2020) Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates. Nat Commun 11:1196

    Article  CAS  Google Scholar 

  44. Haynes WM (2014) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Vojvodic A, Nørskov JK, Abild-Pedersen F (2014) Electronic structure effects in transition metal surface chemistry. Top Catal 57:25–32

    Article  CAS  Google Scholar 

  46. Calle-Vallejo F, Inoglu NG, Su HY, Martinez I, Man C, Koper MTM, Kitchinb JR, Rossmeislc J (2013) Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides. Chem Sci 4:1245

    Article  CAS  Google Scholar 

  47. Calle-Vallejo F, Loffreda D, Koper MTM, Sautet P (2015) Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nat Chem 7:403–410

    Article  CAS  Google Scholar 

  48. Calle-Vallejo F, Martinez JI, Garcia-Lastra JM, Rossmeisl J, Koper MTM (2012) Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. Phys Rev Lett 108:116103

    Article  CAS  Google Scholar 

  49. Mamun O, Winther KT, Boes JR, Bligaard T (2020) A Bayesian framework for adsorption energy prediction on bimetallic alloy catalysts. npj Comput Mater 6:177

    Article  CAS  Google Scholar 

  50. Ling F, Kang W, Jing H et al (2019) Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide Van Der Waals heterostructures. npj Comput Mater 5:20

    Article  Google Scholar 

  51. Allred AL (1961) Electronegativity values from thermochemical data. J Inorg Nucl Chem 17:215–221

    Article  CAS  Google Scholar 

  52. Harrison WA (1989) Electronic structure and the properties of solids: the physics of the chemical bond. Dover Publications, Mineola

    Google Scholar 

  53. Xin H, Holewinski A, Linic S (2012) Predictive structure-reactivity models for rapid screening of Pt-based multimetallic electrocatalysts for the oxygen reduction reaction. ACS Catal 2:12–16

    Article  CAS  Google Scholar 

  54. Shi MM, Bao D, Wulan BR, Li YH, Zhang YF, Yan JM, Jiang Q (2017) Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv Mater 29:1606550

    Article  Google Scholar 

  55. Zhao J, Chen Z (2017) Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. J Am Chem Soc 139:12480–12487

    Article  CAS  Google Scholar 

  56. Han L, Liu X, Chen J, Lin R, Liu H, Lü F, Bak S, Liang Z, Zhao S, Stavitski E (2019) Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew Chem Int Ed 131:2343–2347

    Article  Google Scholar 

  57. Niu H, Wang X, Shao C, Zhang Z, Guo Y (2020) Computational screening single-atom catalysts supported on G-CN for N2 reduction: high activity and selectivity. ACS Sustaine Chem Eng 8:13749–13758

    Article  CAS  Google Scholar 

  58. Zhou Y, Gao G, Li Y, Chu W, Wang LW (2019) Transition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: a theoretical study. Phys Chem Chem Phys 21:3024–3032

    Article  CAS  Google Scholar 

  59. Hammer B, Nørskov JK (1997) Chemisorption and reactivity on supported clusters and thin films. Theory of adsorption and surface reactions. Springer, Dordrecht

    Chapter  Google Scholar 

  60. Xu H, Cheng D, Cao D, Zeng XC (2018) A universal principle for a rational design of single-atom electrocatalysts. Nat Catal 1:339–348

    Article  CAS  Google Scholar 

  61. Greiner MT, Jones T, Beeg S et al (2018) Free-atom-like D states in single-atom alloy catalysts. Nat Chem 10:1008–1015

    Article  CAS  Google Scholar 

  62. Han X, Zhang Z, Xu X (2021) Single atom catalysts supported on N-doped graphene toward fast kinetics in Li–S batteries: a theoretical study. J Mater Chem A 9:12225–12235

    Article  CAS  Google Scholar 

  63. Campbell CT (2007) The degree of rate control: a powerful tool for catalysis research. ACS Catal 7:2770–2779

    Article  Google Scholar 

  64. Bligaard T, Nørskov JK, Dahl S, Matthiesen J, Christensen CH, Sehested J (2004) The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J Catal 224:206–217

    Article  CAS  Google Scholar 

  65. Wang T, Abild-Pedersen F (2021) Achieving industrial ammonia synthesis rates at near ambient condition through modified scaling relations on a confined dual site. Proc Natl Acad Sci USA 118:e2106527118

    Article  CAS  Google Scholar 

  66. Wang S, Petzold V, Tripkovic V, Kleis J, Howalt JG, Skulason E, Fernandez EM, Hvolbæk B, Jones G, Toftelund A, Falsig H, Bjorketun M, Studt F, Abild-Pedersen F, Rossmeisl J, Nørskovde JK, Bligaard T (2011) Universal transition state scaling relations for (de)hydrogenation over transition metals. Phys Chem Chem Phys 13:20760–20765

    Article  CAS  Google Scholar 

  67. Liu X, Xiao J, Peng H, Hong X, Chan K, Nørskov JK (2017) Understanding trends in electrochemical carbon dioxide reduction rates. Nat Commun 8:15438

    Article  CAS  Google Scholar 

  68. Kirk C, Chen LD, Siahrostami S, Karamad M, Bajdich M, Voss J, Nørskov JK, Chan K (2017) Theoretical investigations of the electrochemical reduction of CO on single metal atoms embedded in graphene. ACS Cent Sci 3:1286–1293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the support from the National Natural Science Foundation of China (Nos. 21673095, 51631004, 11974128, 51702345 and 22173034), the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (SKL201910SIC), the Program of Innovative Research Team (in Science and Technology) in University of Jilin Province, the Program for JLU (Jilin University) Science and Technology Innovative Research Team (No. 2017TD-09), the Fundamental Research Funds for the Central Universities, the Shanghai Natural Science Foundation of China (21ZR1472900) and the computing resources of the High Performance Computing Center of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liujian Qi, Erhong Song or Wang Gao.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9642 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Qi, L., Song, E. et al. Effective Descriptor for Nitrogen Reduction on Atomic Catalysts. Catal Lett 153, 300–310 (2023). https://doi.org/10.1007/s10562-022-03979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-03979-4

Keywords

Navigation