Skip to main content
Log in

Pd–NPs@MMT–K10 Catalysis of Suzuki–Miyaura Cross-coupling Reaction: In Situ Generation and Ex Situ Use

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Due to high surface area and low swelling property, Montmorillonite–K10 (MMT–K10) has been gaining widespread applications in heterogeneous catalysis as a material that is used for supporting varieties of catalyst species. The current report describes in situ generation of Pd–NPs@MMT–K10 catalytic system for heterogeneous catalysis of Suzuki–Miyaura (SM) cross-coupling reaction and it’s ex situ applications. While the in situ derived Pd@MMT–K10 was found very effective to deliver the coupling products within short span of time, the same when isolated and purified could serve equally as an externally added heterogeneous catalyst for the same reaction. In our observation, this report is first to include studies on ex situ application of in situ derived heterogeneous catalytic system by carrying out multiple new reactions with varied substrate combinations. PXRD, TEM and XPES studies were performed to have insight into the isolated catalytic system, while 1H & 13C NMR spectroscopy were used to establish the structure of the organic products. In terms of reusability, the catalytic system was very consistent in delivering SM cross-coupling product of 1-bromo-4-methoxybenzene & phenylboronic acid up to 5th run.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Torborg C, Beller M (2009) Adv Synth Catal 351(18):3027–3043

    Article  CAS  Google Scholar 

  2. Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Edit 44(29):4442–4489

    Article  CAS  Google Scholar 

  3. Kitney SP, Cheng F, Khan S, Hope CN, McNab W, Kelly SM (2011) Liq Cryst 38(8):1027–1033

    Article  CAS  Google Scholar 

  4. Miyaura N, Yamada K, Suzuki A (1979) Tetrahedron Lett 20(36):3437–3440

    Article  Google Scholar 

  5. Miyaura N, Yanagi T, Suzuki A (1981) Synthetic Commun 11(7):513–519

    Article  CAS  Google Scholar 

  6. Suzuki A (1999) J Organomet Chem 576(1):147–168

    Article  CAS  Google Scholar 

  7. Li J-H, Liu W-J (2004) Org Lett 6(16):2809–2811

    Article  CAS  PubMed  Google Scholar 

  8. Mu B, Li T, Xu W, Zeng G, Liu P, Wu Y (2007) Tetrahedron 63(46):11475–11488

    Article  CAS  Google Scholar 

  9. Li F, Hor TSA (2008) Adv Synth Catal 350(14–15):2391–2400

    Article  CAS  Google Scholar 

  10. Herrmann WA, Öfele K, Schneider SK, Herdtweck E, Hoffmann SD (2006) Angew Chem Int Edit 45(23):3859–3862

    Article  CAS  Google Scholar 

  11. Lee S (2006) J Organomet Chem 691(7):1347–1355

    Article  CAS  Google Scholar 

  12. Lin Y-R, Chiu C-C, Chiu H-T, Lee D-S, Lu T-J (2018) Appl Organomet Chem 32(1):e3896

    Article  CAS  Google Scholar 

  13. Rao GK, Kumar A, Kumar B, Kumar D, Singh AK (2012) Dalton T 41(7):1931–1937

    Article  CAS  Google Scholar 

  14. Banik B, Tairai A, Shahnaz N, Das P (2012) Tetrahedron Lett 53(42):5627–5630

    Article  CAS  Google Scholar 

  15. Navidi M, Rezaei N, Movassagh B (2013) J Organomet Chem 743:63–69

    Article  CAS  Google Scholar 

  16. Cui X, Zhou Y, Wang N, Liu L, Guo Q-X (2007) Tetrahedron Lett 48(1):163–167

    Article  CAS  Google Scholar 

  17. Nájera C, Gil-Moltó J, Karlström S, Falvello LR (2003) Org Lett 5(9):1451–1454

    Article  PubMed  CAS  Google Scholar 

  18. Kostas ID, Coutsolelos AG, Charalambidis G, Skondra A (2007) Tetrahedron Lett 48(38):6688–6691

    Article  CAS  Google Scholar 

  19. Yang Q, Ma S, Li J, Xiao F, Xiong H (2006) Chem Commun (23):2495–2497

  20. Trilla M, Pleixats R, Man MWC, Bied C, Moreau JJE (2006) Tetrahedron Lett 47(14):2399–2403

    Article  CAS  Google Scholar 

  21. Suzuka T, Nagamine T, Ogihara K, Higa M (2010) Catal Lett 139(3):85–89

    Article  CAS  Google Scholar 

  22. Diebold C, Becht J-M, Lu J, Toy PH, Le Drian C (2012) Eur J Org Chem 2012(5):893–896

    Article  CAS  Google Scholar 

  23. Sayah R, Glegoła K, Framery E, Dufaud V (2007) Adv Synth Catal 349(3):373–381

    Article  CAS  Google Scholar 

  24. Gogoi A, Chutia SJ, Gogoi PK, Bora U (2014) Appl Organomet Chem 28(11):839–844

    Article  CAS  Google Scholar 

  25. Patil AB, Patil DS, Bhanage BM (2012) J Mol Catal A 365:146–153

    Article  CAS  Google Scholar 

  26. Pérez-Lorenzo M (2012) J Phys Chem Lett 3(2):167–174

    Article  CAS  Google Scholar 

  27. Nasrollahzadeh M, Mohammad Sajadi S (2016) J Colloid Interf Sci 462:243–251

    Article  CAS  Google Scholar 

  28. Hagio H, Sugiura M, Kobayashi S (2006) Org Lett 8(3):375–378

    Article  CAS  PubMed  Google Scholar 

  29. Felpin F-X, Ayad T, Mitra S (2006) Eur J Org Chem 2006(12):2679–2690

    Article  CAS  Google Scholar 

  30. Kitamura Y, Sakurai A, Udzu T, Maegawa T, Monguchi Y, Sajiki H (2007) Tetrahedron 63(43):10596–10602

    Article  CAS  Google Scholar 

  31. Maegawa T, Kitamura Y, Sako S, Udzu T, Sakurai A, Tanaka A, Kobayashi Y, Endo K, Bora U, Kurita T, Kozaki A, Monguchi Y, Sajiki H (2007) Chem-Eur J 13(20):5937–5943

    Article  CAS  PubMed  Google Scholar 

  32. Qu K, Wu L, Ren J, Qu X (2012) ACS Appl Mater Inter 4(9):5001–5009

    Article  CAS  Google Scholar 

  33. Artok L, Bulut H (2004) Tetrahedron Lett 45(20):3881–3884

    Article  CAS  Google Scholar 

  34. Li X, Yan X-Y, Chang H-H, Wang L-C, Zhang Y, Chen W-W, Li Y-W, Wei W-L (2012) Org Biomol Chem 10(3):495–497

    Article  CAS  PubMed  Google Scholar 

  35. Gholinejad M (2013) Appl Organomet Chem 27(1):19–22

    Article  CAS  Google Scholar 

  36. Estrada GOD, Blanco ALP, da Silva JFM, Alonso CG, Fernandes-Machado NRC, Cardozo-Filho L, de Souza ROMA, Miranda LSM (2012) Tetrahedron Lett 53(9):1089–1093

    Article  CAS  Google Scholar 

  37. Senapati KK, Roy S, Borgohain C, Phukan P (2012) J Mol Catal A 352:128–134

    Article  CAS  Google Scholar 

  38. Mahanta A, Raul PK, Saikia S, Bora U, Thakur AJ (2018) Appl Organomet Chem 32(3):e4192

    Article  CAS  Google Scholar 

  39. Boruah PR, Gehlot PS, Kumar A, Sarma D (2018) Molecular Catalysis 461:54–59

    Article  CAS  Google Scholar 

  40. Fan X, Yang J, Pang Q, Liu Z, Zhang P, Yang J-H (2021) Catal Lett 151(8):2291–2301

    Article  CAS  Google Scholar 

  41. Du Z, Zhou W, Wang F, Wang J-X (2011) Tetrahedron 67(26):4914–4918

    Article  CAS  Google Scholar 

  42. Razler TM, Hsiao Y, Qian F, Fu R, Khan RK, Doubleday W (2009) J Org Chem 74(3):1381–1384

    Article  CAS  PubMed  Google Scholar 

  43. Han W, Liu C, Jin Z (2008) Adv Synth Catal 350(3):501–508

    Article  CAS  Google Scholar 

  44. Phukan P, Boruah PR, Gehlot PS, Kumar A, Sarma D (2018) Appl Organomet Chem 32(2):e4009

    Article  CAS  Google Scholar 

  45. Gaikwad DS, Undale KA, Patil DB, Pore DM (2019) J Iran Chem Soc 16(2):253–261

    Article  CAS  Google Scholar 

  46. Patil JD, Korade SN, Patil SA, Gaikwad DS, Pore DM (2015) RSC Adv 5(96):79061–79069

    Article  CAS  Google Scholar 

  47. Dewan A, Bharali P, Bora U, Thakur AJ (2016) RSC Adv 6(14):11758–11762

    Article  CAS  Google Scholar 

  48. Konwar M, Boruah PR, Saikia PJ, Khupse ND, Sarma D (2017) ChemistrySelect 2(18):4983–4987

    Article  CAS  Google Scholar 

  49. Tao L, Xie Y, Deng C, Li J (2009) Chin J Chem 27(7):1365–1373

    Article  CAS  Google Scholar 

  50. Iranpoor N, Rahimi S, Panahi F (2016) RSC Adv 6(4):3084–3090

    Article  CAS  Google Scholar 

  51. Camp JE, Dunsford JJ, Cannons EP, Restorick WJ, Gadzhieva A, Fay MW, Smith RJ (2014) ACS Sustain Chem Eng 2(3):500–505

    Article  CAS  Google Scholar 

  52. Nagendrappa G (2002) Resonance 7(1):64–77

    Article  Google Scholar 

  53. Peng J, Yi H, Song S, Zhan W, Zhao Y (2019) Results Phys 12:113–117

    Article  Google Scholar 

  54. Alekseeva O, Noskov A, Grishina E, Ramenskaya L, Kudryakova N, Ivanov V, Agafonov A (2019) Materials 12(16):2578

    Article  CAS  PubMed Central  Google Scholar 

  55. Maiti S, Pramanik A, Chattopadhyay S, De G, Mahanty S (2016) J Colloid Interf Sci 464:73–82

    Article  CAS  Google Scholar 

  56. Sarmah G, Mondal M, Bora U (2015) Appl Organomet Chem 29(8):495–498

    Article  CAS  Google Scholar 

  57. Mondal M, Bora U (2012) Green Chem 14(7):1873–1876

    Article  CAS  Google Scholar 

  58. Amini M, Tarassoli A, Yousefi S, Delsouz-Hafshejani S, Bigdeli M, Salehifar M (2014) Chinese Chem Lett 25(1):166–168

    Article  CAS  Google Scholar 

  59. Das P, Sarmah C, Tairai A, Bora U (2011) Appl Organomet Chem 25(4):283–288

    Article  CAS  Google Scholar 

  60. Peng G, Li T, Ai B, Yang S, Fu J, He Q, Yu G, Deng S (2019) Chem Eng J 360:1119–1127

    Article  CAS  Google Scholar 

  61. Tura JM, Regull P, Victori L, de Castellar MD (1988) Surf Interface Anal 11(8):447–449

    Article  CAS  Google Scholar 

  62. Blakemore D (2016) Chapter 1 Suzuki-Miyaura coupling. In: Blakemore DC, Doyle PM, Fobian YM (eds) Synthetic methods in drug discovery, vol 1. The Royal Society of Chemistry, London, pp 1–69

    Google Scholar 

Download references

Acknowledgements

PB and AJB are receiver of CSIR-SRF (09/1175(0008)/2020-EMR-I) & DST-INSPIRE fellowship (IF170498) respectively and are grateful to CSIR, Ministry of Science and Technology, India & Department of Science and Technology, India for the same. Authors acknowledge MHR research group of the Department of Chemistry, Rajiv Gandhi University for giving access to the vacuum oven. Analytical support from SAIC, Tezpur University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhinath Saikia.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 970 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuyan, P., Bhuyan, A.J., Gogoi, P.J. et al. Pd–NPs@MMT–K10 Catalysis of Suzuki–Miyaura Cross-coupling Reaction: In Situ Generation and Ex Situ Use. Catal Lett 152, 2705–2715 (2022). https://doi.org/10.1007/s10562-021-03841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03841-z

Keywords

Navigation