Skip to main content
Log in

Selective Oxidation of 5-Hydroxymethylfurfural to 2, 5-Diformylfuran Over a Vanadium Manganese Oxide Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

5-Hydroxymethylfurfural (HMF) is a major feedstock derived from biomass which could be converted to various high-value-added chemicals. However, it is a challenge to obtain a target product with high selectivity under mild conditions using a heterogeneous non-noble catalyst. In this study, a vanadium manganese oxide catalyst was prepared by a simple chemical synthesis method. Detailed characterization was performed to reveal that the catalyst phase composition is V2O5 and Mn(VO3)2. The catalyst showed good catalytic activity in the selective oxidation of HMF to produce 2,5-diformylfuran (DFF) at atmospheric oxygen pressure. Under optimal conditions, DFF selectivity of 97.8% was obtained at 80 °C with acetonitrile as the solvent. Furthermore, the catalyst could be recovered conveniently and reused for several runs without significant loss of the catalytic activity.

Graphic Abstract

The vanadium manganese oxide catalyst was developed for the selective oxidation of 5-hydroxymethylfurfural into 2,5-diformylfuran under atmospheric pressure of molecular oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gallezot P (2012) Chem Soc Rev 41:1538–1558

    Article  PubMed  CAS  Google Scholar 

  2. Wen S, Liu K, Tian Y, Xiang YP, Liu XX, Yin DL (2020) Processes 8:1273

    Article  CAS  Google Scholar 

  3. Lai JH, Zhou SH, Cheng F, Guo DW, Liu XX, Xu Q, Yin DL (2020) Catal Lett 150:1301–1308

    Article  CAS  Google Scholar 

  4. Guan W, Zhang YL, Wei YA, Li B, Feng YH, Yan CH, Huo PW, Yan YS (2020) Fuel 278:118362

    Article  CAS  Google Scholar 

  5. Guan W, Zhang YL, Chen Y, Wu JC, Cao Y, Wei YA, Huo PW (2021) J Catal 396:40–53

    Article  CAS  Google Scholar 

  6. Ma J, Artz J, Mallmann S, Palkovits R (2015) Chemsuschem 8:672–679

    Article  CAS  Google Scholar 

  7. Jia WL, Du J, Liu H, Feng YC, Sun Y, Tang X, Zeng XH, Lu Lin L (2019) J Chem Technol Biotechnol 94(12):3832–3838

    Article  CAS  Google Scholar 

  8. Ma J, Du Z, Xu J, Chu Q, Pang Y (2011) Chemsuschem 4:51–54

    Article  PubMed  CAS  Google Scholar 

  9. Chen LF, Yang WY, Gui ZY, Saravanamurugan S, Riisager A, Cao WR, Qi ZW (2019) Catal Today 319:105–112

    Article  CAS  Google Scholar 

  10. Wang F, Jiang L, Wang J, Zhang Z (2016) Energy Fuel 30:5885–5892

    Article  CAS  Google Scholar 

  11. Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee K-Y, Cho JK (2013) J Ind Eng Chem 19:1056–1059

    Article  CAS  Google Scholar 

  12. Liu YF, Gan T, He Q, Zhang H, He XH, Ji HB (2020) Ind Eng Chem Res 59(10):4333–4337

    Article  CAS  Google Scholar 

  13. Chatterjee M, Ishizaka T, Chatterjee A, Kawanami H (2017) Green Chem 19:1315–1326

    Article  CAS  Google Scholar 

  14. Zhu YQ, Shen MN, Xia YG, Lu M (2015) Catal Commun 64:37–43

    Article  CAS  Google Scholar 

  15. Zhu YQ, Lu M (2015) RSC Adv 5:85579–85585

    Article  CAS  Google Scholar 

  16. Fang R, Luque R, Li Y (2016) Green Chem 18:3152–3157

    Article  CAS  Google Scholar 

  17. Liu B, Zhang Z, Lv K, Deng K, Duan H (2014) Appl Catal A 472:64–71

    Article  CAS  Google Scholar 

  18. Neatu F, Petrea N, Petre R, Somoghi V, Florea M, Parvulescu VI (2016) Catal Today 278:66–73

    Article  CAS  Google Scholar 

  19. Ning L, Liao S, Sun Y, Yu L, Tong X (2018) Waste Biomass Valori 9:95–101

    Article  CAS  Google Scholar 

  20. Zhao J, Jayakumar A, Lee JM (2018) ACS Sustain Chem Eng 6(3):2976–2982

    Article  CAS  Google Scholar 

  21. Biswasa S, Duttab B, Mannodi-Lanakkithodic A, Ryan Clarke R, Song WQ, Ramprasad R, Suib SL (2017) Chem Commun 53:11751–11754

    Article  Google Scholar 

  22. Chen J, Guo Y (2015) ChemPlusChem 80:1760–1768

    Article  PubMed  CAS  Google Scholar 

  23. Liu XX, Xiao JF, Ding H, Zhong WZ, Xu Q, Su S, Yin DL (2016) Chem Eng J 283:1315–1321

    Article  CAS  Google Scholar 

  24. Yan B, Li X, Fu XY, Zhang LL, Bai ZM, Yang XL (2020) Nano Energy 78:105233

    Article  CAS  Google Scholar 

  25. Park SK, Nakhanivej P, Seok Yeon J, Ho Shin K, Dose WM, De Volder M, Bae Lee J, Jin Kim H, Park HS (2021) J Energ Chem 55:108–113

    Article  Google Scholar 

  26. Milikić J, Martins M, Dobrota AS, Bozkurt G, Soylu GSP, Yurtcan AB, Skorodumova NV, Pašti IA, Šljukić B, Santos DMF (2021) J Energ Chem 55:428–436

    Article  Google Scholar 

  27. Muruganantham R, Liu WR, Lin CH, Rudysh M, Piasecki M (2019) J Energy Storage 26:100915

    Article  Google Scholar 

  28. Zhang XY, Li XJ, Jiang FY, Du W, Hou CX, Xu ZY, Zhu LW, Wang ZK, Liu H, Zhou WJ, Yuan H (2020) Dalton Trans 49:1794–1802

    Article  PubMed  CAS  Google Scholar 

  29. Arasi SE, Ranjithkumar R, Devendran P, Krishnakumar M, Arivarasan A (2021) J Alloy Compd 857:157628

    Article  CAS  Google Scholar 

  30. Xin Y, Li HJ, Zhang N, Li Q, Zhang Z, Cao XM, Hu P, Zheng L, Anderson JA (2018) ACS Catal 8:4937–4949

    Article  CAS  Google Scholar 

  31. Hua K, Li XJ, Fu ZW, Fang D, Bao R, Yi JH, Luo ZP (2019) J Solid State Chem 273:287–294

    Article  CAS  Google Scholar 

  32. Hong JS, Seo H, Lee YH, Cho KH, Ko C, Park S, Nam KT (2020) Small Methods 4:1900733

    Article  CAS  Google Scholar 

  33. Qin Y, Jiang Z, Guo L, Huang J, Jiang ZJ (2021) Chem Eng J 406:126894

    Article  CAS  Google Scholar 

  34. Liu NN, Wu X, Yin YY, Chen A, Zhao CY, Guo ZK, Fan LS, Zhang NQ (2020) ACS Appl Mater Inter 12:28199–28205

    Article  CAS  Google Scholar 

  35. Yang WH, Peng Y, Wang Y, Wang Y, Liu H, Su ZA, Yang WN, Chen JJ, Si WZ, Li JH (2020) Appl Catal B 278:119279

    Article  CAS  Google Scholar 

  36. Yin BY, Liu Z, Wang YF, Ji XH, Dong DH, Hu X, Wei T (2020) ACS Appl Mater Interfaces 12(41): 45961-45967

    Article  PubMed  CAS  Google Scholar 

  37. Zhang YF, Zheng JQ, Zhao YF, Hu T, Gao ZM, Meng CG (2016) Appl Surf Sci 377:385–393

    Article  CAS  Google Scholar 

  38. Chen CC, Xie M, Kong LS, Lu WH, Feng ZY, Zhan JH (2020) J Hazard 390:122146

    Article  CAS  Google Scholar 

  39. Grosvenor AP, Bellhouse EM, Korinek A, Bugnet M, Mcdermid JR (2016) Appl Surf Sci 379:242–248

    Article  CAS  Google Scholar 

  40. Biesinger MC, Payne BP, Grosvenor AP, Lau L, Gerson AR, Smart R (2011) Appl Surf Sci 257(7):2717–2730

    Article  CAS  Google Scholar 

  41. Liu Y, Zhang YG, Du J, Yu WC, Qian YT (2006) J Cryst Growth 291:320–324

    Article  CAS  Google Scholar 

  42. Zhang H, Han XR, Gan R, Guo ZX, Ni YH, Zhang L (2020) Appl Surf Sci 511:145527

    Article  CAS  Google Scholar 

  43. Zhang HF, Clark JH, Geng T, Zhang HX, Cao FH (2021) Chemsuschem 14:456–466

    Article  PubMed  CAS  Google Scholar 

  44. Chen LF, Zhang T, Cheng HY, Richards RM, Qi ZW (2020) Nanoscale 12:17902–17914

    Article  PubMed  Google Scholar 

  45. Pal P, Saravanamurugan S (2020) ChemCatChem 12(8):2324–2332

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 21606082), Scientific Research Fund of Hunan Provincial Education Department (Grant No. 20B364), and Hunan Province College Students Research Learning and Innovative Experiment Project (Grant Nos. S202010542062 and S202110542077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianxiang Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Cheng, F., Wang, F. et al. Selective Oxidation of 5-Hydroxymethylfurfural to 2, 5-Diformylfuran Over a Vanadium Manganese Oxide Catalyst. Catal Lett 152, 2280–2287 (2022). https://doi.org/10.1007/s10562-021-03817-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03817-z

Keywords

Navigation